International scientific journal

ISSN: 2663-0419 (electronic version)

ISSN: 2218-8754 (print version)

International scientific journal

ISSN: 2663-0419 (electronic version)

ISSN: 2218-8754 (print version)

contentImg
SCImago Journal & Country Rank

Heavy carbon isotope composition of the Miocene diatomites and oils in the South Caspian Basin as a possible global phenomenon

Feyzullayev A.A.1,2

1 Ministry of Science and Education of the Republic of Azerbaijan, Institute of Geology and Geophysics, Azerbaijan 119, H.Javid ave., Baku,  AZ1143: fakper@gmail.com

2 Ministry of Science and Education of the Republic of Azerbaijan, Institute of Oil and Gas, Azerbaijan 9, F.Amirov str., Baku, AZ1000

 

DOI: 10.33677/ggianas20240100108

Summary

A-
A+

The paper provides an analysis of the results of isotope-geochemical studies of rocks and oils of the Cenozoic-Mesozoic section of the South Caspian Basin (SCB) over the past 30 years. As a result, the previously established fact of the heavy carbon isotope composition (ICC) of organic matter (OM) of Miocene rocks (Diatom Formation), as well as its derivative oils accumulated in the main (Lower Pliocene) reservoir of the SCB, were confirmed. To verify the global nature of this phenomenon, a comparative analysis of isotope-geochemical data on sedimentary basins of 18 countries was carried out. A generalized diagram showing the limits of change in the ICC of kerogen and oils and their average values for various stratigraphic complexes for all considered basins has been constructed. It has been established that this phenomenon is also characteristic of other basins of the world. Based on this, a conclusion was made about the global nature of this phenomenon. The reasons that led to the isotopic shift in the global carbon budget that occurred in the Miocene are not completely understood. The existing ideas about its possible nature are considered. The results once again confirmed the effectiveness of using δ13C for oil-oil and oil-source rock correlation in combination with other geochemical criteria.

 

Keywords: carbon isotope composition, organic matter, oil, sedimentary basins, Miocene, Pre-Miocene

 

REFERENCES


Aboglila S. Organic and isotopic geochemistry of source-rocks and crude oils from the East Sirte Basin (Libya). Thesis for the Degree of Doctor of Philosophy of Curtin University of Technology, Western Australia. 30 June 2010, 113 p.


Adams C.G., Benson R.H., Kidd R.B., Ryan W.F.B., Wright R.C. The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. Nature, Vol. 269, 1977, pp. 383-386.


Afanasenkov A.P., Zheglova T.P., Petrov A.L. Hydrocarbons-biomarkers and carbon isotope composition of bitumoids and oils of Mesozoic sediments in the western part of the Yenisei-Khatanga oil and gas region. Georesources, Vol. 21, No. 1, 2019, pp. 47-63, DOI: https://doi.org/10.18599/grs.2019.1.47-63 (in Russian).


Andrusevich V.E., Engel M.H., Zumberge J.E., Brothers L.A. Secular, episodic chances in stable carbon isotope composition of crude oils. Chemical Geology, Vol. 152, 1998, pp. 59-72.


Anuar A. Source rock evaluation of Middle-Late Miocene sequences, north Sabah basin, Malaysia. A dissertation submitted for the degree of Doctor of Philosophy. Petroleum Geology Group, Department of Geology, Royal School of Mines Imperial College, London, 1994, 316 p.


Aoyagi K., Iijima A. Petroleum occurrence, generation, and accumulation in the Miocene siliceous deposits of Japan. In: Siliceous sedimentary rock-hosted ores and petroleum, (J.R Hein, ed.), Van Nostrand Reinhold Co. New York, 1987, pp. 117-137.


Aoyagi K., Omokawa M. Neogene diatoms as the important source of petroleum in Japan. Journal of Petroleum Science and Engineering, Vol. 7, No. 3-4, 1992, pp. 247-262.


Bailey N.J.L., Guliyev I.S., Feyzullayev A.A. Source rocks in the South Caspian. AAPG/ASPG research symposium “Oil and gas petroleum systems in rapidly-subsiding basins”. Book of abstracts. Baku, Azerbaijan, October 6-9 1996.


Barron J.A. Diatomite: environmental and geological factors affecting its distribution. In: Siliceous sedimentary rock-hosted ores and petroleum (J.R.Hein, ed.), Van Nostrand Reinhold Co. New York, 1987, pp. 164-78.


Bazhenova O.K. Oil and gas source rock potential and the presence of oil and gas in Sakhalin. In: The Cenozoic geology and the oil and gas presence in Sakhalin (Gladenkov Y.B., Bazhenova O.K., Grechin V.I., Margulis L.S. and Salnikov B.A., eds.). GEOS. Moscow, 2002, pp. 137-194 (in Russian).


Berger W.H. Planktonic foraminifera: selective solution and the Lysocline. Marine Geology, Vol. 8, No. 2, 1970, pp. 111-138, http://dx.doi.org/10.1016/0025-3227(70)90001-0.


Bozcu A. Source rock potential of Lower-Middle Miocene lacustrine deposits: example of the Küçükkuyu formation, Nw Turkey. Oil Shale, Vol. 32, No. 4, 2015, pp. 313-334, DOI:10.3176/oil.2015.4.03.


Chung H.M., Rooney M.A., Toon M.B., Claypool G.E. Carbon isotope composition of marine crude oils. AAPG Bulletin, Vol. 76, No. 7, 1992, pp. 1000-1007, https://doi.org/10.1306/ BDFF8952-1718-11D7-8645000102C1865D.


Clayton J.L., Warden A., Daws T.A., Lillis P.G., Michael G.E., Dawson M. Organic Geochemistry of black shales, marlstones, and oils of Middle Pennsylvanian rocks from the Northern Denver and Southeastern Powder River Basins, Wyoming, Nebraska, and Colorado.US Geological Survey Bulletin 1917-K, US Government Printing Office, Denver, 1992, 52 p.


Diatomite. Geological Dictionary. Vol. 1. Nedra. Moscow, 1978, 227 p. (in Russian).


Dill H.G., Sachsenhofer R.F., Grecula P., Sasvári T., Palinkas L.A., Borojevic-Šostaric S., Strmic-Palinkas S., Prochaska W., Garuti, G., Zaccarini F., Arbouille D., Schulz H.-M. Fossil fuels, ore and industrial minerals. In: The Geology of Central Europe (T.McCann, ed.), Vol. 2: Mesozoic and Cenozoic. Geological Society. London, 2008, pp. 1341-1449, https://doi.org/10.1144/cev2p.9.


Feyzullayev A., Aliyeva Es.A. Estimation of the various source rocks contribution in oil pools formation. EAGE 65 Conference and Exhibition, Stavanger, The Norway, 2-5 June 2003, Extended Abstracts on CD, P 026, 4 p.


Feyzullayev A., Guliyev I., Tagiyev M. Source potential of the Mesozoic-Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the Lower Pliocene reservoirs. Petroleum Geoscience, Vol. 7, No. 4, 2001, pp. 409-417.


Feyzullayev A.A. Isotope-geochemical characteristics of hydrocarbons on the north-western flank of South Caspian basin. ANAS Transactions, Earth Sciences, Vol. 1, 2019, pp. 3-10.


Froelich A.J., Robinson G.R. (eds.). Studies of the Early Mesozoic Basins of the Eastern United States. Geological Survey Bulletin, Vol. 1776, 1988, pp. 63-68.


Golyshev S.I., Padalko N.L., Madisheva R.K., Ozdoev S.M., Portnov V.S., Isaev V.I. Isotopic composition of the Aryskum depression oil (South Kazakhstan). Bulletin of the Tomsk Polytechnic University, Geo Аssets engineering, V. 331, No. 3, 2020, pp. 80-89 (in Russian).


Gratzer R., Bechtel A., Sachsenhofer R.F., Linzer H.-G., Reischenbacher D., Schulz H.-M. Oil- oil and oil-source rock correlations in the Alpine Foreland Basin of Austria: insights from biomarker and stable carbon isotope studies. Marine and Petroleum Geology, Vol. 28, 2011, pp. 1171-1186.


Grosjean E., Love G.D., Stalvies C., Fike D.A., Summons R.E. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin. Org. Geochem., Vol. 40, 2009, pp. 87-110, DOI:10.1016/j.orggeochem.2008.09.011.


Guliyev I., Feyzullayev A. Geochemistry of hydrocarbon seepages in Azerbaijan. In:  Hydrocarbon migration and its near-surface expression (D.Shumacher and M.Abrams, eds). AAPG Memoir, Vol. 66, 1996, pp. 63-70.


Guliyev I., Feyzullayev A., Tagiyev M. Isotope-geochemical characteristics in the South Caspian basin. Energy Exploration and Exploitation, Vol. 15, No. 4/5, 1997, pp. 311-368.


Guliyev I.S., Feyzullayev A.A., Guseynov D.A. Carbon isotopic composition of the hydrocarbon fluids of the South Caspian Megadepression. Geochemistry International, Vol. 39, No. 3, 2001, pp. 237-243.


Isaacs C.M., Rullkötter J. (eds.). The Monterey Formation: from rocks to molecules. Columbia University Press. New York, 2001, pp. 268-295, https://doi.org/10.1017/S0016756802246506.


Johnson K.M. Multi-tracer geochemical investigation of laminated diatomaceous sediments: Miocene Monterey formation and Holocene marine environments (Saanich Inlet and Santa Barbara basin). A thesis for the degree of Master of science. The University of British Columbia, Vancouver, Canada. March, 1998, 106 p.


Jordan R.W., Stickley C.E. Diatoms as indicators of paleoceanographic events. In: The diatoms: applications for the Environmental and Earth Sciences. Cambridge University Press. Cambridge, 2010, pp. 423-452.


Kennett J.P. Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, deep sea drilling project LEG 901. Graduate School of Oceanography, University of Rhode Island, 1986, pp. 1383-1411.


Khim B.-K., Lee J., Ha S., Park J., Pandey D.K., Clift P.D., Kulhanek D.K., Steinke S., Griffith E.M., Suzuki K., Xu Z., IODP Expedition 355 Scientists. Variations in δ13C values of sedimentary organic matter since late Miocene time in the Indus Fan (IODP Site 1457) of the eastern Arabian Sea. Geological Magazine, Vol. 157, No. 6, 2020, pp. 1012-1021, https://doi.org/10.1017/S0016756818000870.


Komada T., Druffel E.R.M., Hwang J. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes. Global Biogeochem. Cycles, Vol. 19, No. 2, 2005, GB2017, DOI:10.1029/2004GB002347.


Kontorovich A.E., Kostyreva E.A., Saraev S.V., Melenevskii V.N., Fomin A.N. The geochemistry of Cambrian organic matter from the Cis-Yenisei subprovince (evidence from the wells Vostok-1 and Vostok-3). Russian Geology and Geophysics, Vol. 52, No. 6, 2011, pp. 571-582 (in Russian).


Körmös S., Sachsenhofer R.F., Bechtel A., Geza Radovics B., Milota K., Schubert F.  Source rock potential, crude oil characteristics and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian basin). Marine and Petroleum Geology, Vol. 127, 104955, 2021, DOI:10.1016/j.marpetgeo.2021.104955.


Kotarba M.J., Bilkiewicz E., Jurek K., Wieclaw D., Machowski G. Origin, migration and secondary processes of oil and natural gas in the western part of the Polish Outer Carpathians: geochemical and geological approach. International Journal of Earth Sciences, Original paper, Vol. 110, 2021, pp. 1653-1679, DOI:10.1007/s00531-021-02035-7.


Kotarba M.J., Koltun Y.V. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. In: The Carpathians and Their Foreland: Geology and Hydrocarbon Resources (J.Golonka, F.J.Pícha, eds.). American Association of Petroleum Geologists Memoirs, Vol. 84, 2006, pp. 395-442, https://doi.org/10.1306/985614m843074.


Krebs W.N., Gladenkov A.Y., Jones G.D. Diatoms in oil and gas exploration. In: The diatoms: applications for the environmental and earth sciences (J.P.Smol, E.F.Stoermer, eds.), Cambridge University Press. 2010, pp. 402-412.


LaRiviere J.P., Ravelo A.C., Crimmins A., Dekens P.S., Ford H.L., Lyle M., Wara M.W. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature, Vol. 486, No. 7401, 2012, pp. 97-100.


Leushina E., Bulatov T., Kozlova E., Panchenko I., Voropaev A., Karamov T., Yermakov Y., Bogdanovich N., Spasennykh M. Upper Jurassic-Lower Cretaceous source rocks in the North of Western Siberia: comprehensive geochemical characterization and reconstruction of paleo-sedimentation conditions. Geosciences, Vol. 11, No. 8, 2021, pp. 320, https://doi.org/10.3390/geosciences11080320.


Li H.J., Song C., Zhang J., Hui Z., Chen S., Xian F. Understanding Miocene climate evolution in Northeastern Tibet: stable carbon and oxygen isotope records from the Western Tianshui Basin, China. Journal of Earth Science, Vol. 25, No. 2, 2014, pp. 357-365, DOI: 10.1007/s12583-014-0416-8.


Lillis P., Magoon L.B., Stanley R.G., McLaughlin R.J. Warden A. Characterization of Northern California Petroleum by stable carbon isotopes. Open-File Report 99-164, U.S. Geological Survey, California, 2001, 13 p., DOI: 10.3133/ofr99164.


Lillis P.G., Magoon L.B. Petroleum systems of the San Joaquin Basin Province, California –geochemical characteristics of oil types. In: Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California (Allegra Hosford Scheirer, ed.). U.S. Geological Survey. Professional Paper 1713, 2007, pp. 1713-1765, DOI:10.3133/pp1713.ch09.


Loutit T.S., Kennett J.P. Application of carbon isotope stratigraphy to late Miocene shallow marine sediments, New Zealand. Science, Vol. 204, 1979, pp. 1196-1199.


Madisheva R.K. Study of the geodynamic situation of sedimentation and formation of oil and gas content of the pre-Jurassic complex of the Aryskum trough. Dissertation for the degree of Doctor of Philosophy. Karaganda Technical University, The Republic of Kazakhstan, Karaganda, 2020, 99 p. (in Russian).


Magoon L.B., Lillis P.G., Warden A., Stanley R.G., MacKevett N.H. and Castaño J. Carbon isotopic composition identify four hydrocarbon types in northern California. AAPG Bulletin, Vol. 79, 1995, p. 592.


Maslov V.P. Siliceous organisms: general comments. Atlas of rock-building organisms (calcareous and siliceous). Nauka. Moscow, 1973, 89 p. (in Russian).


Mayer J., Rupprecht B.J., Sachsenhofer R.F., Tari G., Bechtel A. et al. Source potential and depositional environment of Oligocene and Miocene rocks offshore Bulgaria. Geological Society of London, Special Publications, Vol. 464, No. 1, 2018, pp. 307-328, DOI:10.1144/sp464.2.


Mejia L.M., Mendez-Vicente A., Abrevaya L., Lawrence K.T., Ladlow C., Bolton C., Stoll H. A diatom record of CO2 decline since the late Miocene. Earth and Planetary Science Letters, Vol. 479, 2017, pp. 18-33.


Mercer J.H., Sutter J.F. Late Miocene-Earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeogr., Palaeoclimatol., Palaeoecol., Vol. 38,  1982, pp. 185-206.


Miller K.G., Faribanks R.G., Mountain G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, Vol. 2, 1987, pp. 1-19.


Mitchison F.L. Neogene diatoms from the Southern Ocean; tiny fossils, big questions. Thesis submitted for the Degree of Doctor of Philosophy. Cardiff University, August 2019, 303 p.


Morris D.A. Organic diagenesis of Miocene sediments from Site 341, Wring Plateau, Norway. In: M.Talwani, G.Udintsev et al., Initial Reports of the DSDP, Vol. 38, Washington (U.S. Government Printing Office), 1976, pp. 809-814.


Oblasovа N.V., Goncharova I.V., Derduga A.V., Kunitsyna I.V. Genetic types of oils in the eastern part of the Crimean-Caucasian Region. Geochemistry, Vol. 65, No. 11, 2020, pp. 1129-1150 (in Russian).


Ogbesejana A.B., Bello O.M., Ali T. Origin and depositional environments of source rocks and crude oils from Niger Delta Basin: Carbon isotopic evidence. China Geology, Vol. 3, No. 4, 2020, pp. 602-610.


Pagani M., Freeman K.H., Arthur M.A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, Vol. 285, No. 5429, 1999, pp. 876-879.


Peters K.E., Lillis P.G., Lorenson T.D., Zumberge J.E. Organofacies and paleoclimate controlled genetic oil families in the onshore/offshore Santa Maria Basins, California. Schlumberger-Stanford University–U.S. Geological Survey–Geomark Research LLC, 2018.


Philp R.P., Jarde E. Application of stable isotopes and radioisotopes. In: Introduction to environmental forensics (B.Murphy, R.Morrison, eds.). Elsevier. New York, NY, USA, 2015, pp. 455-512, DOI:10.1016/B978-0-12-404696-4.


Sachsenhofer R.F., Popov S.V., Ćorić S., Mayer J., Misch D. et al. Paratethyan petroleum source rocks: an overview. Journal of Petroleum Geology, Vol. 41, No. 3, 2018, pp. 219-245, DOI:10.1111/jpg.12702.


Schouten S., Schoell M., Rijpstra W.I.C., Damste S J.S., De Leeuw J.W. A molecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments, Pismo basin. Geochimica et Cosmochimica Acta, Vol. 61, No. 10, 1997, pp. 2065-2082.


Schwartz D.E. Lithology, petrophysics, and hydrocarbons in cyclic Belridge Diatomite, south Belridge oil field, Kern Co., California. Fourth International Congress on Pacific Neogene Stratigraphy, Berkeley, CA, July 29-31 1987, Abstract 102.


Shackleton N.J., Kennett J.P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. In: (J.P.Kennett, R.E.Houtz et al.) Init. Repts. DSDP, 29, Washington (U.S. Government Printing Office), 1975, pp. 743-755.


Silverman S.R., Epstein S. Carbon isotopic compositions of petroleums and other sedimentary organic materials. AAPG Bulletin, Vol. 42, 1958, pp. 998-1012.


Spiker E.C., Kotra R.K., Hatcher P.G., Gottfried R.M., Horan M.F., Olsen P.E. Source of kerogen in Black shales from the Hartford and Newark basins, eastern United States. In: Studies of the Early Mesozoic Basins of the Eastern United States U.S. (A.J.Froelich, G.R.Robinson, eds.). Geological Survey Bulletin, Vol. 1776, 1988, pp. 63-68.


Timoshina I.D. Geochemistry of organic matter of oil-producing rocks and oils of the Upper Precambrian in the south of Eastern Siberia. Publishing House SB RAS. Novosibirsk, branch"Geo", 2005, 166 p.


Tomkeev S.I. Petrological English-Russian explanatory dictionary. In 2 volumes. T. 1. Mir. Moscow, 1986, 285 p. (in Russian).


Tulan E. Evaluation of diatom-rich Oligocene to Miocene hydrocarbon source rocks in the Paratethys. Doctoral Thesis. Montan Univercity Leoben, 2020, 210 p.


Vail P.R., Hardenbol J. Sea-level changes during the Tertiary. Oceanus, Vol. 22, 1979, pp. 71-79.


Veto I., Báldi K., Coric S., Hetényi M., Demény A., Futo I. (2016) Benthic algae as major precursors of oil-prone kerogen – A case study from the Hungarian Middle Miocene. Central European Geology, Vol. 59, No.1-4, 1979, pp. 87-107, DOI: 10.1556/24.59.2016.004.


Więcław D., Kotarba M.J., Kowalski A., Koltun Y.V. Origin and maturity of oils in the Ukrainian Carpathians and their Mesozoic basement. Geological Quarterly, Vol. 56, No. 1, 2012, pp. 158-168.


Younes M.A. Crude oil geochemistry dependent biomarker distributions in the Gulf of Suez, Egypt.  In: Crude oil exploration in the world (M.Younes, ed.). ISBN: 978-953-51-0379-0, InTech., 2012, 220 p. 


Zachos J., Pagani M., Sloan L. et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, Vol. 292, 2001, pp. 686-693. 


Zdanaviciutė O., Bojesen-Koefoed J.A. Geochemistry of Lithuanian oils and source rocks:  preliminary assessment. Journal of Petroleum Geology, Vol. 20, No. 4, 1997, pp. 381-402.


Zhuze A.P. Diatoms. Atlas of rock-forming organisms (calcareous and siliceous). Nauka. Moscow, 1973, pp. 89-91 (in Russian).

 

DOI: 10.33677/ggianas20240100108