Международный научный журнал

ISSN: 2663-0419 (электронная версия)

ISSN: 2218-8754 (версия для печати)

Международный научный журнал

ISSN: 2663-0419 (электронная версия)

ISSN: 2218-8754 (версия для печати)

contentImg
SCImago Journal & Country Rank

Распределение кальцитовых цементов и их влияние на резервуары в продуктивной толще Южно-Каспийского и Куринского бассейнов

Зейналов Г.А.


Бакинская Высшая Нефтяная Школа, Азербайджан
Баку, Сабаильский район, Новая Сальянская трасса, 3 км, 25 : gasham.zeynalov@bhos.edu.az


DOI: 10.33677/ggianas20250200151


 

Резюме

A-
A+

Качество коллекторов продуктивной толщи нижнего плиоцена в бассейнах Южного Каспия и Куры напрямую контролируется кальцитовой цементацией и уплотнением, связанными с седиментационными ycловиями. Изучение взаимодействия этих процессов в коллекторах даёт возможность проанализировать закономерности диагенеза в флювиально-дельтовых песчаниках, особенно с учётом малоизученного влияния карбонатной цементации в флювиально-дельтовых фациях. Выпадение кальцитового цемента при уплотнении осадочных пород существенно влияет на проницаемость песчаных коллекторов и фильтрацию флюидов при добыче нефти и газа. С этой точки зрения изучены особенности распределения конкреций кальцитового цемента в песчаниках верхней продуктивной толщи Южно-Каспийского и Куринского бассейнов и их влияние на пористость, проницаемость и фильтрацию флюидов. Распределение кальцитовых конкреций было картировано в выходах песчаников верхней части продуктивной толщи Ясамальской (Шубанинской) антиклинали на западном фланге Южно-Каспийской впадины. Крупные пластинчатые кальцитовые конкреции в этих флювиально-дельтовых песчаниках, как правило, следуют наклону слоистости в сторону бассейна. По данным рентгеновской дифракции (XRD) и сканирующей электронной микроскопии (SEM) высокое содержание кальцитовых цементных конкреций, присутствующих в песчаниках верхней части продуктивной толщи (балаханский VIII и балаханский VI горизонты) Ясамальской (Шубанинской) антиклинали, значительно снижает пористость и проницаемость для потока флюида. Понимание условий осадконакопления кальцитовой цементации, наблюдаемых в песчаниках продуктивной толщи на западном борту Южно-Каспийского бассейна, имеет важное значение для оценки качества аналоговых коллекторов в песчаниках соседнего Куринского бассейна. Наличие большого объёма кальцитового цемента существенно влияет на петрофизические свойства коллекторов, что обуславливает важность изучения их происхождения.


Ключевые слова
: кальцитовый цемент, Южно-Каспийский бассейн, Куринский бассейн, диагенез, поток жидкости, продуктивная толща

 

ЛИТЕРАТУРА


Abdullayev NR, Weber J, van Baak GC et al (2018) Detrital zircon and apatite constraints on depositional ages, sedimentation rates and provenance: Pliocene Productive Series South Caspian, Basin, Azerbaijan. Basin Res 30(5):835–862. https://doi.org/10.1111/bre.12283


Aliev AK (1960) Geology and hydrocarbons of the Kura-Araks Region. Azerneftneshr, Baku, p 361 (in Russian)


Aliyeva EGM (2005) Reservoirs of the lower Pliocene productive series at the western flank of the south Caspian basin. Lithology and Mineral Resources 40(3):267–278


Alizadeh AA, Ahmedov HA, Ahmedov AM et al (1966) Geology of oil and gas fields in Azerbaijan. Nedra, Moscow, p 392 (in Russian)


Alizadeh AA, Guliev IS, Mamedov PZ (2018) Productive strata of Azerbaijan. vol 2, Nedra, Moscow, p 236 (in Russian)


Alizadeh AA, Guliyev IS, Kadirov FA, Eppelbaum LV (2016) Geosciences in Azerbaijan. Geology, vol 1, Springer. Heidelberg, New York, p 239


Alkhasli S, Zeynalov G, Shahtakhtinskiy A (2022) Quantifying occurrence of deformation bands in sandstone as a function of structural and petrophysical factors and their impact on reservoir quality: an example from outcrop analog of Productive Series (Pliocene), South Caspian Basin. Journal of Petrol Explor Prod Technol 12:1977–1995. https://doi.org/10.1007/s13202-021-01448-z


Allen MB, Vincent SJ, Alsop GI, Ismail-zadeh AJ, Flecker R (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366(3–4):223–239. https://doi.org/10.1016/S0040-1951(03)00098-2


Allen MB, Jones S, Ismail-Zadeh A et al (2002) Onset of subduction as the cause of rapid Pliocene–Quaternary subsidence in the South Caspian Basin. Geology 30(9):775–778


Artyushkov EV (2007) Formation of the superdeep South Caspian basin: subsidence driven by phase change in continental crust. Russian Geology and Geophysics 48(12):1002–1014


Bjørkum PA, Walderhaug O (1990) Lateral extent of calcite cemented zones in shallow marine sandstones. In: Buller AT, Berg E, Hjelmeland O (eds) North Sea oil and gas reservoirs–II. Graham and Trotman, London, pp 331–336


Boles JR, Ramseyer K (2002) Diagenetic carbonate in Miocene sandstone reservoir, San Joaquin Basin, California. Am Assoc Pet Geol Bull 71(12):1475–1487


Brunet MF, Korotaev MV Ershov AV, Nikishin AM (2003) The South Caspian basin: a review of its evolution from subsidence modeling. In: Brunet M-F, Cloetingh S (eds) Integrated Peri-Tethyan Basins Studies (Peri-Tethys Programme). Sedimentary Geology 156(4):119–148


Crossey LJ, Loucks R, Totten MW (1996) Siliciclastic diagenesis and fluid flow: concepts and applications. SEPM Special Publication 55, p 222


Delu Xie, Suping Yao, Jian Cao, Wenxuan Hu, Yang Qin (2020) Origin of calcite cements and their impact on reservoir heterogeneity in the Triassic Yanchang Formation, Ordos Basin, China: A combined petrological and geochemical study. Marine and Petroleum Geology 117(104376). https://doi.org/10.1016/j.marpetgeo.2020.104376



Devlin WJ, Cogswell JM, Gaskins GM et al (1999) South Caspian Basin: Young, Cool, and Full of Promise. GSA TODAY A Publication of the Geological Society of America 9(7):1–2


Dutton SP (2008) Calcite cement in Permian deep-water sandstones Delaware Basin, west Texas: origin, distribution, and effect on reservoir properties. Am Assoc Pet Geol Bull 92(6):765–787


Dutton SP, White CD, Willis BJ, Novakovic J (2002) Calcite cement distribution and its effect on fluid flow in a deltaic sandstone, Frontier Formation, Wyoming. AAPG Bulletin 86(12):2007–2021


Dutton SP, Willis BJ, White CD, Bhattacharya JP (2000) Outcrop characterization of reservoir quality and interwell-scale cement distribution in a tide-influenced delta, Frontier Formation, Wyoming, USA. Clay Minerals 35(1): 95–105. https://doi.org/10.1180/000985500546756


Forte A, Cowgill E, Bernardin et al (2012) Late Cenozoic deformation of the Kur fold-thrust belt, southern Greater Caucasus. Geological Society of America Bulletin 122(3):465–486


Gamkrelidze I (1986) Geodynamic evolution of the Caucasus and adjacent areas in Alpine time. Tectonophysics 127(3-4):261–277. https://doi.org/10.1016/0040-1951(86)90064-8


Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in Mesozoic and Cenozoic. Tectonophysics 381(1):233–273


Gorin VA (1939) Productive Series of Absheron Peninsula. AzGonti, Baku, p 12–19 (in Russian)


Granath JW, Baganz OW (1996) A review of Neogene subsidence mechanisms for the South Caspian basin. In: 3rd Annual meeting and fieldtrip of IGCP project N 369 ‘‘Comparative evolution of Peri-Tethyan rift basins’’, Centennial Celebration of EGSMA, 19 – 24 November, Cairo, Egypt, pp 24–25


Green T, Abdullayev N, Hossack J, Riley G, Roberts AM (2009) Sedimentation and subsidence in the South Caspian Basin, Azerbaijan. In: Brunet M-F, Wilmsen M, Granath JW (eds.) South Caspian to Central Iran Basins. Geological Society of London, Special Publication, London, vol 312, pp 241–260


Guliyev IS, Mamedov PZ, Feyzullayev AA et al (2003) Hydrocarbon systems of the South Caspian Basin, Nafta-press, Baku, p 205


Hinds D, Simmons MD, Allen MB, Aliyeva E (2007) Architecture variability in the Pereriva and Balakhany suites of the Neogene productive series, Azerbaijan: implications for reservoir quality. In: Yilmaz PO, Isaksen GH (eds) Oil and Gas of the Greater Caspian Area, AAPG Studies in Geology, Tulsa, vol 55, pp 87–107. https://dx.doi.org/10.1306/1205841St553010


Hinds DJ, Aliyeva E, Allen MB, Davies CE et al (2004) Sedimentation in a discharge dominated fluvial-lacustrine system: the Neogene Productive Series of the South Caspian Basin, Azerbaijan. Mar Pet Geol 21(5):613–638. https://doi.org/10.1016/j.marpetgeo.2004.01.009


Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the south Caspian basin. Geophysics Journal International 148(2):214–245. https://doi.org/10.1046/j.1365-246X.2002.01588.x


Javanshir RJ, Riley GW, Duppenbecker SJ, Abdullayev NR (2015) Validation of lateral fluid flow in an overpressured sand-shale sequence during development of Azeri-Chirag-Gunashli oil field and SD gas field: South Caspian Basin, Azerbaijan. Mar Pet Geol 59:593-610.


Jones RW, Simmons MD (1996) A review of the stratigraphy of Eastern Paratethys (Oligocene-Holocene). Bulletin of the National History Museum, London 52(1):25–49


Kadirov FA (2004) Gravity model of lithosphere in the Caucasus-Caspian Region. In: South Caspian Basin: Geology, geophysics, oil and gas content, Nafta Press. Baku, Azerbaijan, p 333


Kadirov FA, Safarov RT (2014) Current crustal deformation within the Azerbaijan territory. Seismoprognosis observations in the territory of Azerbaijan 11(1):34–37


Kantorowicz JD, Bryant ID, Dawans JM (1987) Controls on the permeability and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England, and Viking Group, Troll field, Norway. In: Marshall JD (ed) Diagenesis of sedimentary sequences, Oxford, Blackwell, p 103–118


Khain VE, Shardanov AN (1952) Geological history and structure of the Kura basin. Baku, Azerbaijan Academy of Sciences Publ, p 348


Klein JS, Mozley P, Campbell A, Cole R (1999) Spatial distribution of carbon and oxygen isotopes in laterally extensive carbonate-cemented layers: implications for mode of growth and subsurface identification. J Sedim Res 69:184–191


McBride EF, Milliken KL, Cavazza W et al (1995) Heterogeneous distribution of calcite cement at the outcrop scale in Tertiary sandstones, northern Apennines, Italy. AAPG Bulletin 79(7): 1044–1063


Milliken KL, McBride EF, Cavazza W et al (1998) Geochemical history of calcite precipitation in Tertiary sandstones, northern Apennines, Italy. In: Morad S (ed) Carbonate cementation in sandstones: International Association of Sedimentologists, Special Publication 26:213–239


Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: Morad S (ed) Carbonate cementation in sandstones: International Association of Sedimentologists, Special Publication 26:1–26


Morton A, Allen M, Simmons M et al (2003) Provenance patterns in a neotectonic basin: Pliocene and Quaternary sediment supply to the South Caspian. Basin Research 15(3):321–337


Mozley PS, Davis JM (1996) Relationship between oriented calcite concretions and permeability correlation structure in an alluvial aquifer, Sierra Ladrones Formation, New Mexico. J Sed Res 66:11–16


Nemcok M, Feyzullayev AA, Kadirov FA et al (2011) Neotectonics of the Caucasus and Kura Valley, Azerbaijan. Global Engineers and Technologists Review 1:1–14


Ortoleva PJ (ed) (1994) Basin compartments and seals. AAPG Memoir 61, p 477


Reynolds AD, Simmons MD, Bowman MBJ et al (1998) Implications of outcrop geology for reservoirs in the Neogene productive series: Apsheron Peninsula, Azerbaijan. AAPG Bulletin 82(1):25–49


Saigal GC, Bjørlykke K (1987) Carbonate cements in clastic reservoir rocks from offshore Norway – relationships between isotopic composition, textural development and burial depth. In: Marshall JD (ed) Diagenesis of sedimentary sequences, Oxford, Blackwell, Geological Society, Special Publication 36:313–324


Sullivan KB, McBride EF (1991) Diagenesis of sandstones at shale contacts and diagenetic heterogeneity, Frio Formation. AAPG Bulletin 75(1):121–138


Taylor KG, Gawthorpe RL, Curtis CD, et al (2000) Carbonate cementation within a sequence stratigraphic framework: the Upper Cretaceous sandstones of Book Cliffs, Utah–Colorado. Journal of Sedimentary Research 70:360–372


Uskin NI (1916) Stratigraphy and tectonics of the Productive Series of the Balakhany-Sabunchi-Ramany oil-producing region. Baku, p 80 (in Russian)


Walderhaug O, Bjørkum PA (1998) Calcite growth in shallow marine sandstones: growth mechanisms and geometry. In: Morad S (ed) Carbonate cementation in sandstones: International Association of Sedimentologists, Special Publication 26:179–192


Walderhaug O, Bjørkum PA, Nordgard-Bolas HM (1989) Correlation of calcite-cemented layers in shallow-marine sandstones of the Fensfjord Formation in the Brage field. In Collinson JD (ed) Correlation in hydrocarbon exploration, Graham and Trotman, London, p 367–375


Worden RH, Matray JM (1998) Carbonate cement in the Triassic Chaunoy Formation of the Paris basin: distribution and effect on flow properties. In: Morad S (ed) Carbonate cementation in sandstones, International Association of Sedimentologists, Special Publication 26:163–177


Zeynalov G, Alkhasli S, Shahtakhtinskiy A (2017) Outcrop analogue study of deformation bands and their impact on rock properties of the Productive Series in South Caspian Basin. OnePetro, Society of Petroleum Engineers, p 20. https://doi.org/10.2118/189018-MS


Zeynalov G, Alkhasli Sh (2018) Structural deformation and its impact to sandstone reservoirs in Eastern Azerbaijan. The 80th EAGE Conference & Exhibition,11-14 June 2018, Copenhagen, Denmark, EarthDoc, Vol 2018, p 1–5. https://doi.org/10.3997/2214-4609.201801590


Zeynalov GA (2024) Calcite diagenesis impact on sandstone reservoirs of the Productive Series in South Caspian and Kura Basins, 85th EAGE Annual Conference & Exhibition, Jun 2024, Oslo, Norway, EarthDoc, Volume 2024, p 1–5. https://doi.org/10.3997/2214-4609.202410156


Zeynalov GA (2022) Environmental facies analysis of the Productive Series in the Kura Basin, Azerbaijan. 83rd Annual EAGE Conference Proceedings, Exhibition, Spain, Madrid, Jun 2022, EarthDoc, Volume 2022, p 1–5. https://doi.org/10.3997/2214-4609.202210479


Zonenshain LP, Le Pichon X (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 123:2181–211


 

DOI: 10.33677/ggianas20250200151