Использование глобальной гравитации для картирования связи между сейсмичностью и геологическим строением в средней части провинции Ачех, Индонезия
Янис М.1, Абдулла Ф.1,2, Ананда Р.3, Сямсюдин Ф.1,2, Исмаил Н.1,2, Зайнал М.1, Паембонан А.Я.4
1 Геофизический инженерный факультет, Университет Сийя Куала Банда-Ачех 23111, Индонезия: yanis@usk.ac.id
2 Физический факультет, Университет Syiah Kuala Банда Ачех 23111, Индонезия
3 Кафедра геофизической инженерии, Бандунгский технологический институт Бандунг 40132, Индонезия
4 Геофизический инженерный факультет, Технологический институт Суматры Южный Лампунг 35365, Индонезия
DOI: 10.33677/ggianas20240200124
Резюме
Ачех – одна из индонезийских провинций, подверженных землетрясениям, поскольку ее пересекают Большой Суматрский разлом и зоны субдукции вдоль западного побережья с высокой сейсмической активностью. В последнее время исследования по картированию разломов были сосредоточены на сегментах Ачех и Сеулимум в западной части провинции Ачех. В отличие от этого, центральная часть еще не изучена, несмотря на то, что за последние 10 лет произошло несколько землетрясений в районах, где трассы разломов все еще нуждаются в надлежащем картировании. Поэтому в данном исследовании использовалась глобальная гравитационная модель Plus (GGM+) с высоким разрешением 200 м/пкс для анализа взаимосвязи между сейсмичностью и структурами разломов в центральной части Ачеха. Остаточная аномалия GGM+ указывает на существование геологических структур, таких как сегменты Ачех, Памеу и Самаланга, характеризующихся низкой гравитацией. Для уточнения наличия разломов также применялись некоторые производные методы, например, горизонтальная производная аномалия для картирования сегментов Ачех, Бати, Самаланга и Алуэ Линтанг - Пеусанган. Вертикальная производная показывает существование разлома Тринггаденг, предположительно являющегося источником землетрясения Пиди Джая в 2016 году. Таким образом, производная наклона может также визуализировать наличие разлома Ниссам, что не отображается в других методах фильтрации. Мы также провели 3D гравитационное моделирование с использованием алгоритма Occam и сингулярного разложения; плотность указывает на глубину и геометрию структуры разлома, в целом 8 км, что обеспечивает надежность GGM+ при изучении разломов, особенно в высокогорных районах, где использование приборов затруднено.
Ключевые слова: Гравитация, разлом, GGM +, провинция Ачех, геологическое строение, 3D инверсия
ЛИТЕРАТУРА
Abdullah F. et al. Subsurface mapping of fault structure in the Weh island by using a 3D density of global gravity. GEOMATE Journal, Vol. 23, No. 96, 2022, pp. 121-128.
Andersen O.B. and Knudsen P. The role of satellite altimetry in gravity field modelling in coastal areas. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, Vol. 25, No. 1, 2000, pp. 17-24, DOI:10.1016/S1464-1895(00)00004-1.
Bennett J.D. et al. The geology of the Banda Aceh Quadrangle, Sumatra. Geological Research and Development Center, Bandung. Explanatory Note. 1981, 19 p.
Bradley K.E. et al. Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. Journal of Geophysical Research: Solid Earth, Vol. 122, No. 1, John Wiley and Sons Ltd. Jan. 2017, pp. 572-591, DOI:10.1002/2016JB013549.
Chatterjee S. et al. Validation of ERS-1 and high-resolution satellite gravity with in-Situ Shipborne gravity over the Indian Offshore Regions: Accuracies and implications to subsurface modeling. Marine Geodesy, Vol. 30, No. 3, Aug. 2007, pp. 197-216, DOI:10.1080/01490410701438323.
Cooper G.R.J. Interpreting potential field data using continuous wavelet transforms of their horizontal derivatives. Computers and Geosciences, Vol. 32, 2006, pp. 984-992, DOI:10.1016/ j.cageo.2005.10.012.
Cooper G.R.J. and Cowan D.R. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, Vol. 32, No. 10, 2006, pp. 1585-1591, DOI:10.1016/ j.cageo.2006.02.016.
Dewanto B.G. et al. The 2022 Mw 6.1 Pasaman Barat, Indonesia earthquake, confirmed the existence of the Talamau segment fault based on teleseismic and satellite gravity data. Quaternary, Vol. 5, No. 4, p. 45, 2022, DOI:10.3390/quat5040045.
Doǧru F. et al. Application of tilt angle method to the Bouguer gravity data of Western Anatolia. Bulletin of the mineral research and exploration, 2017, Vol. 155, No. 155, pp. 213-222.
Eppelbaum L.V. and Katz Y.I. Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Proceedings of National acad. Sci. Azerb. Rep., Ser.: The Sciences of Earth, No. 3, 2012, pp. 29-40.
Eppelbaum L.V. and Katz, Yu.I. Newly developed paleomagnetic map of the Easternmost Mediterranean Joined with tectono-structural analysis Unmask geodynamic history of this region. Central European Jour. of Geosciences (Open Geosciences), Vol. 7, No. 1, 2015, pp. 95-117.
Ghosal D. et al. New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies. Geochemistry, Geophysics, Geosystems, Vol. 13, No.11, 2012, DOI:10.1029/2012GC004122.
Hill E.M. et al. The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults. Journal of Geophysical Research: Solid Earth, Vol. 120, No. 5, John Wiley and Sons Ltd. 2015, pp. 3723-3747, DOI:10.1002/2014JB011703.
Hinze W.J. et al. Gravity and magnetic exploration: principles, practices, and applications. cambridge university press, Jan. 2010, 512 p., DOI:10.1017/CBO9780511843129.
Hiramatsu Y. et al. Gravity gradient tensor analysis to an active fault: a case study at the Togi-Gawa Nangan fault, Noto Peninsula, Central Japan. Earth, Planets and Space, Vol. 71, No. 1, Springer. Berlin, Heidelberg, 2019, DOI:10.1186/s40623-019-1088-5.
Hirt C., Claessens S. et al. New ultrahigh-resolution picture of Earth’s gravity field. Geophysical Research Letters, Vol. 40, No. 16, Aug. 2013, pp. 4279-4283, DOI:10.1002/grl.50838.
Hirt C., Kuhn M. et al. Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Computers and Geosciences, Vol. 73, Elsevier, 2014, pp. 71-80, DOI:10.1016/ j.cageo.2014.09.001.
Ito T. et al. Isolating along-strike variations in the depth extent of shallow creep and fault locking on the Northern Great Sumatran Fault. Journal of Geophysical Research, Vol. 117, No. B6, 2012, pp. 1-16, DOI:10.1029/2011JB008940.
Keating P. and Pinet N. Comparison of surface and shipborne gravity data with satellite-altimeter gravity data in Hudson Bay. The Leading Edge, Society of Exploration Geophysicists, Vol. 32, No. 4, 2013, pp. 450-458, https://doi.org/10.1190/tle32040450.1.
Kern M. et al. A Study on the combination of satellite, airborne and terrestrial gravity data. Journal of Geodesy, Vol. 77, pp. 217-225, 2003, DOI:10.1007/s00190-003-0313-x.
Lay T. et al. The Great Sumatra-Andaman earthquake of 26 December 2004. Science, Vol. 308, No. 5725, American Association for the Advancement of Science, May 2005, pp. 1127-33, DOI:10.1126/SCIENCE.1112250.
Marwan M. et al. A low-cost UAV based application for identify and mapping a geothermal feature in Ie Jue Manifestation, Seulawah Volcano, Indonesia. International Journal of GEOMATE, Vol. 20, No. 80, 2021, pp. 135-142, DOI:10.21660/ 2021.80.J2044.
Marwan M. et al. geoelectrical model of geothermal spring in Ie Jue Seulawah deriving from 2D VLF-EM and DC resistivity methods. Journal of Applied Engineering Science, Vol. 21, No. 1, 2023, pp.59-69, DOI:10.5937/JAES0-38014.
McCaffrey R. The Tectonic Framework of the Sumatran Subduction Zone. Annual Reviews, Vol. 37, Apr. 2009, pp. 345-366, DOI:10.1146/annurev.earth.031208.100212.
Muksin U. et al. Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result. Journal of Physics: Conference Series, Vol. 1011, No. 1, Apr. 2018, p. 012031, DOI:10.1088/1742-6596/1011/1/012031.
Muksin U. et al. AcehSeis Project provides insights into the detailed seismicity distribution and relation to fault structures in Central Aceh, Northern Sumatra. Journal of Asian Earth Sciences, Vol. 171, 2019, pp. 20-27, Elsevier, DOI:10.1016/ J.JSEAES.2018.11.002.
Muzli M. et al. The 2016 Mw 6.5 Pidie Jaya, Aceh, North Sumatra, earthquake: Reactivation of an unidentified sinistral fault in a region of distributed deformation. Seismological Research Letter, Vol. 89, No. 5, 2018, pp. 1761-1772, DOI:10.1785/0220180068.
Nasuti A. et al. Onshore-offshore potential field analysis of the Møre-Trøndelag fault complex and adjacent structures of Mid Norway. Tectonophysics, Vol. 518-521, 20 January 2012, pp. 17-28, DOI:10.1016/J.TECTO.2011.11.003.
Natawidjaja D.H. and Triyoso W. The Sumatran fault zone – from source to hazard. Journal of arthquake and Tsunami, Vol. 1, No. 01, World Scientific, 2007, pp. 21-47.
Pavlis N.K. et al. The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, Vol. 117, No. 4, 2012, pp. 1-38, DOI:10.1029/2011JB008916.
Pham L.T. et al. Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, Vol. 177, No. 11, 2020, pp. 5237-5249, DOI:10.1007/ s00024-020-02542-9.
Pham L.T. et al. Subsurface structural mapping from high-resolution gravity data using advanced processing methods. Journal of King Saud University, Science, Vol. 33, No. 5, 2021, p. 101488, DOI:10.1016/j.jksus.2021.101488.
Pirttijarvi M. Gravity interpretation and modeling software based on 3-D block models. GRABLOX. User’s Guide to Version, 2008.
Purnachandra Rao N. et al. Structure and tectonics of the Andaman Subduction Zone from modeling of seismological and gravity data. In: New Frontiers in Tectonic Research - General Problems, Sedimentary Basins and Island Arcs, Intech Publisher/ Rijeka, Croatia, 2011, DOI:10.5772/19090.
Rexer M. and Hirt Ch. Spectral analysis of the Earth’s topographic potential via 2D-DFT: A new data-based degree variance model to degree 90,000. Journal of Geodesy, Vol. 89, No. 9, Sept. 2015, pp. 887-909, DOI:10.1007/s00190-015-0822-4.
Rizal M. et al. The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conference Series: Earth and Environmental Science, Vol. 364, Dec. 2019, p. 012036, DOI:10.1088/1755-1315/364/1/012036.
Sieh K. and Natawidjaja D. Neotectonics of the Sumatran Fault, Indonesia. Journal of Geophysical Research: Solid Earth, Vol. 105, No. B12, 2000, pp. 28295-28326, DOI:10.1029/ 2000jb900120.
Tassis G.A. et al. A new Bouguer gravity anomaly field for the Adriatic Sea and its application for the study of the crustal and upper Mantle Structure. Journal of Geodynamics, Vol. 66, 2013, pp. 38-52, Elsevier, DOI:10.1016/j.jog.2012.12.006.
Vaish J. and Pal S.K. Geological mapping of Jharia Coalfield , India using GRACE EGM2008 gravity data: A vertical derivative approach. Geocarto International, Vol. 30, No. 4, 2015, pp. 388-401, DOI:10.1080/10106049.2014.905637.
van der Meijde M. et al. GOCE data, models and applications: A review. International Journal of Applied Earth Observation and Geoinformation, Vol. 35, Part A, March 2015, pp.4-15, DOI:10.1016/j.jag.2013.10.001.
Vos I.M.A. et al. Resolving the nature and geometry of major fault systems from geophysical and structural analysis: The Palmerville Fault in NE Queensland, Australia. Journal of Structural Geology,Vol. 28, No.11, November 2006, pp. 2097-2108, DOI:10.1016/j.jsg.2006.07.016.
Yanis M., Simanjuntak A.V.H., Abdullah F. et al. Application of Seismicity and Gravity Observation-Based Filtering Model for Mapping a Fault Structure in Weh Island, Indonesia. Iraqi Geology Journal, Vol. 56, July.2024, pp. 260–274. DOI:10.46717/IGJ.56.2A.20MS-2023-7-29.
Yanis M., Marwan M. et al. A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity. Acta Geophysica, Vol.70, July 2022, pp.2057-2075, Springer, DOI:10.1007/S11600-022-00860-1.
Yanis M., Marwan M. et al. Application of GEOSAT and ERS Satellite as an Alternative method of gravity ground measurement in hydrocarbon basin in East Island. Indonesian Journal of Geography, Vol. 33, No. 2, Feb. 2020, DOI:10.22146/ mgi.50782 (in Indonesian).
Yanis M., Faisal A., Yenny A. et al. Continuity of Great Sumatran Fault in the marine area revealed by 3D inversion of gravity data. Jurnal Teknologi, Vol. 83, No. 1, Jan.2021, pp. 145-155, DOI:10.11113/jurnalteknologi.v83.14824.
Yanis M., Faisal A., Zaini N. et al. The northernmost part of the Great Sumatran Fault Map and images derived from gravity anomaly. Acta Geophysica, Vol. 69, No. 3, June 2021, pp. 795-807, DOI:10.1007/s11600-021-00567-9.
DOI: 10.33677/ggianas20240200124