Тяжелый изотопный состав углерода диатомитов и нефтей миоцена в Южно-Каспийском бассейне как возможное глобальное явление
Фейзуллаев А.А. 1,2
1 Министерство науки и образования Азербайджанской Республики, Институт геологии и геофизики, Азербайджан AZ1143, Баку, просп. Г.Джавида, 119: fakper@gmail.com
2 Министерство науки и образования Азербайджанской Республики, Институт нефти и газа, Азербайджан AZ 1000, Баку, ул. Ф.Амирова, 9
DOI: 10.33677/ggianas20240100108
Резюме
В статье представлен анализ результатов изотопно-геохимических исследований пород и нефтей кайнозойско-мезозойского разреза Южно-Каспийского бассейна (ЮКБ) за последние 30 лет. Подтвержден ранее установленный факт накопления тяжелого изотопного состава углерода (ИСУ) органического вещества (ОВ) миоценовых пород (Диатомовая свита), а также его производных нефтей в главном (нижнеплиоценовом) резервуаре ЮКБ. Для проверки глобального характера этого явления был проведен сравнительный анализ изотопно-геохимических данных по осадочным бассейнам 18 стран. Построена обобщенная диаграмма, показывающая пределы изменения ИСУ керогена и нефтей и их средние значения для различных стратиграфических комплексов всех рассмотренных бассейнов. Установлено, что это явление свойственно и другим бассейнам мира, на основании чего сделан вывод о его глобальном характере. Причины, которые привели к изотопному сдвигу в глобальном балансе углерода, произошедшему в миоцене, до конца не выяснены. Рассмотрены существующие представления о его возможной природе. Полученные результаты еще раз подтвердили эффективность использования геохимического параметра δ13C для корреляции нефть-порода и нефть-нефть в сочетании с другими геохимическими критериями.
Ключевые слова: изотопный состав углерода, органическое вещество, нефть, осадочные бассейны, миоцен
ЛИТЕРАТУРА
Aboglila S. Organic and isotopic geochemistry of source-rocks and crude oils from the East Sirte Basin (Libya). Thesis for the Degree of Doctor of Philosophy of Curtin University of Technology, Western Australia. 30 June 2010, 113 p.
Adams C.G., Benson R.H., Kidd R.B., Ryan W.F.B., Wright R.C. The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. Nature, Vol. 269, 1977, pp. 383-386.
Andrusevich V.E., Engel M.H., Zumberge J.E., Brothers L.A. Secular, episodic chances in stable carbon isotope composition of crude oils. Chemical Geology, Vol. 152, 1998, pp. 59-72
Anuar A. Source rock evaluation of Middle-Late Miocene sequences, north Sabah basin, Malaysia. A dissertation submitted for the degree of Doctor of Philosophy. Petroleum Geology Group, Department of Geology, Royal School of Mines Imperial College, London, 1994, 316 p.
Aoyagi K., Iijima A. Petroleum occurrence, generation, and accumulation in the Miocene siliceous deposits of Japan. In: Siliceous sedimentary rock-hosted ores and petroleum, (J.R Hein, ed.), Van Nostrand Reinhold Co. New York, 1987, pp. 117-137.
Aoyagi K., Omokawa M. Neogene diatoms as the important source of petroleum in Japan. Journal of Petroleum Science and Engineering, Vol. 7, No. 3-4, 1992, pp. 247-262.
Bailey N.J.L., Guliyev I.S., Feyzullayev A.A. Source rocks in the South Caspian. AAPG/ASPG research symposium “Oil and gas petroleum systems in rapidly-subsiding basins”. Book of abstracts. Baku, Azerbaijan, October 6-9 1996.
Barron J.A. Diatomite: environmental and geological factors affecting its distribution. In: Siliceous sedimentary rock-hosted ores and petroleum (J.R.Hein, ed.), Van Nostrand Reinhold Co. New York, 1987, pp. 164-78.
Berger W.H. Planktonic foraminifera: selective solution and the Lysocline. Marine Geology, Vol. 8, No. 2, 1970, pp. 111-138, http://dx.doi.org/10.1016/0025-3227(70)90001-0.
Bozcu A. Source rock potential of Lower-Middle Miocene lacustrine deposits: example of the Küçükkuyu formation, Nw Turkey. Oil Shale, Vol. 32, No. 4, 2015, pp. 313-334, DOI:10.3176/oil.2015.4.03.
Chung H.M., Rooney M.A., Toon M.B., Claypool G.E. Carbon isotope composition of marine crude oils. AAPG Bulletin, Vol. 76, No. 7, 1992, pp. 1000-1007, https://doi.org/10.1306/ BDFF8952-1718-11D7-8645000102C1865D.
Clayton J.L., Warden A., Daws T.A., Lillis P.G., Michael G.E., Dawson M. Organic Geochemistry of black shales, marlstones, and oils of Middle Pennsylvanian rocks from the Northern Denver and Southeastern Powder River Basins, Wyoming, Nebraska, and Colorado.US Geological Survey Bulletin 1917-K, US Government Printing Office, Denver, 1992, 52 p.
Dill H.G., Sachsenhofer R.F., Grecula P., Sasvári T., Palinkas L.A., Borojevic-Šostaric S., Strmic-Palinkas S., Prochaska W., Garuti, G., Zaccarini F., Arbouille D., Schulz H.-M. Fossil fuels, ore and industrial minerals. In: The Geology of Central Europe (T.McCann, ed.), Vol. 2: Mesozoic and Cenozoic. Geological Society. London, 2008, pp. 1341-1449, https://doi.org/10.1144/cev2p.9.
Feyzullayev A., Aliyeva Es.A. Estimation of the various source rocks contribution in oil pools formation. EAGE 65 Conference and Exhibition, Stavanger, The Norway, 2-5 June 2003, Extended Abstracts on CD, P 026, 4 p.
Feyzullayev A., Guliyev I., Tagiyev M. Source potential of the Mesozoic-Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the Lower Pliocene reservoirs. Petroleum Geoscience, Vol. 7, No. 4, 2001, pp. 409-417.
Feyzullayev A.A. Isotope-geochemical characteristics of hydrocarbons on the north-western flank of South Caspian basin. ANAS Transactions, Earth Sciences, Vol. 1, 2019, pp. 3-10.
Froelich A.J., Robinson G.R. (eds.). Studies of the Early Mesozoic Basins of the Eastern United States. Geological Survey Bulletin, Vol. 1776, 1988, pp. 63-68.
Gratzer R., Bechtel A., Sachsenhofer R.F., Linzer H.-G., Reischenbacher D., Schulz H.-M. Oil- oil and oil-source rock correlations in the Alpine Foreland Basin of Austria: insights from biomarker and stable carbon isotope studies. Marine and Petroleum Geology, Vol. 28, 2011, pp. 1171-1186.
Grosjean E., Love G.D., Stalvies C., Fike D.A., Summons R.E. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin. Org. Geochem., Vol. 40, 2009, pp. 87-110, DOI:10.1016/j.orggeochem.2008.09.011.
Guliyev I., Feyzullayev A. Geochemistry of hydrocarbon seepages in Azerbaijan. In: Hydrocarbon migration and its near-surface expression (D.Shumacher and M.Abrams, eds). AAPG Memoir, Vol. 66, 1996, pp. 63-70.
Guliyev I., Feyzullayev A., Tagiyev M. Isotope-geochemical characteristics in the South Caspian basin. Energy Exploration and Exploitation, Vol. 15, No. 4/5, 1997, pp. 311-368.
Guliyev I.S., Feyzullayev A.A., Guseynov D.A. Carbon isotopic composition of the hydrocarbon fluids of the South Caspian Megadepression. Geochemistry International, Vol. 39, No. 3, 2001, pp. 237-243.
Isaacs C.M., Rullkötter J. (eds.). The Monterey Formation: from rocks to molecules. Columbia University Press. New York, 2001, pp. 268-295, https://doi.org/10.1017/S0016756802246506.
Johnson K.M. Multi-tracer geochemical investigation of laminated diatomaceous sediments: Miocene Monterey formation and Holocene marine environments (Saanich Inlet and Santa Barbara basin). A thesis for the degree of Master of science. The University of British Columbia, Vancouver, Canada. March, 1998, 106 p.
Jordan R.W., Stickley C.E. Diatoms as indicators of paleoceanographic events. In: The diatoms: applications for the Environmental and Earth Sciences. Cambridge University Press. Cambridge, 2010, pp. 423-452.
Kennett J.P. Miocene to early Pliocene oxygen and carbon isotope stratigraphy in the southwest Pacific, deep sea drilling project LEG 901. Graduate School of Oceanography, University of Rhode Island, 1986, pp. 1383-1411.
Khim B.-K., Lee J., Ha S., Park J., Pandey D.K., Clift P.D., Kulhanek D.K., Steinke S., Griffith E.M., Suzuki K., Xu Z., IODP Expedition 355 Scientists. Variations in δ13C values of sedimentary organic matter since late Miocene time in the Indus Fan (IODP Site 1457) of the eastern Arabian Sea. Geological Magazine, Vol. 157, No. 6, 2020, pp. 1012-1021, https://doi.org/10.1017/S0016756818000870.
Komada T., Druffel E.R.M., Hwang J. Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes. Global Biogeochem. Cycles, Vol. 19, No. 2, 2005, GB2017, DOI:10.1029/2004GB002347.
Körmös S., Sachsenhofer R.F., Bechtel A., Geza Radovics B., Milota K., Schubert F. Source rock potential, crude oil characteristics and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian basin). Marine and Petroleum Geology, Vol. 127, 104955, 2021, DOI:10.1016/j.marpetgeo.2021.104955.
Kotarba M.J., Bilkiewicz E., Jurek K., Wieclaw D., Machowski G. Origin, migration and secondary processes of oil and natural gas in the western part of the Polish Outer Carpathians: geochemical and geological approach. International Journal of Earth Sciences, Original paper, Vol. 110, 2021, pp. 1653-1679, DOI:10.1007/s00531-021-02035-7.
Kotarba M.J., Koltun Y.V. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. In: The Carpathians and Their Foreland: Geology and Hydrocarbon Resources (J.Golonka, F.J.Pícha, eds.). American Association of Petroleum Geologists Memoirs, Vol. 84, 2006, pp. 395-442, https://doi.org/10.1306/985614m843074.
Krebs W.N., Gladenkov A.Y., Jones G.D. Diatoms in oil and gas exploration. In: The diatoms: applications for the environmental and earth sciences (J.P.Smol, E.F.Stoermer, eds.), Cambridge University Press. 2010, pp. 402-412.
LaRiviere J.P., Ravelo A.C., Crimmins A., Dekens P.S., Ford H.L., Lyle M., Wara M.W. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature, Vol. 486, No.7401, 2012, pp. 97-100.
Leushina E., Bulatov T., Kozlova E., Panchenko I., Voropaev A., Karamov T., Yermakov Y., Bogdanovich N., Spasennykh M. Upper Jurassic-Lower Cretaceous source rocks in the North of Western Siberia: comprehensive geochemical characterization and reconstruction of paleo-sedimentation conditions. Geosciences, Vol. 11, No. 8, 2021, pp. 320, https://doi.org/10.3390/geosciences11080320.
Li H.J., Song C., Zhang J., Hui Z., Chen S., Xian F. Understanding Miocene climate evolution in Northeastern Tibet: stable carbon and oxygen isotope records from the Western Tianshui Basin, China. Journal of Earth Science, Vol. 25, No. 2, 2014, pp. 357-365, DOI: 10.1007/s12583-014-0416-8.
Lillis P., Magoon L.B., Stanley R.G., McLaughlin R.J. Warden A. Characterization of Northern California Petroleum by stable carbon isotopes. Open-File Report 99-164, U.S. Geological Survey, California, 2001, 13 p., DOI: 10.3133/ ofr99164.
Lillis P.G., Magoon L.B. Petroleum systems of the San Joaquin Basin Province, California –geochemical characteristics of oil types. In: Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California (Allegra Hosford Scheirer, ed.). U.S. Geological Survey. Professional Paper 1713, 2007, pp. 1713-1765, DOI:10.3133/pp1713.ch09.
Loutit T.S., Kennett J.P. Application of carbon isotope stratigraphy to late Miocene shallow marine sediments, New Zealand. Science, Vol. 204, 1979, pp. 1196-1199.
Magoon L.B., Lillis P.G., Warden A., Stanley R.G., MacKevett N.H. and Castaño J. Carbon isotopic composition identify four hydrocarbon types in northern California. AAPG Bulletin, Vol. 79, 1995, p. 592.
Mayer J., Rupprecht B.J., Sachsenhofer R.F., Tari G., Bechtel A. et al. Source potential and depositional environment of Oligocene and Miocene rocks offshore Bulgaria. Geological Society of London, Special Publications, Vol. 464, No. 1, 2018, pp. 307-328, DOI:10.1144/sp464.2.
Mejia L.M., Mendez-Vicente A., Abrevaya L., Lawrence K.T., Ladlow C., Bolton C., Stoll H. A diatom record of CO2 decline since the late Miocene. Earth and Planetary Science Letters, Vol. 479, 2017, pp. 18-33.
Mercer J.H., Sutter J.F. Late Miocene-Earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeogr., Palaeoclimatol., Palaeoecol., Vol. 38, 1982, pp. 185-206.
Miller K.G., Faribanks R.G., Mountain G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, Vol. 2, 1987, pp. 1-19.
Mitchison F.L. Neogene diatoms from the Southern Ocean; tiny fossils, big questions. Thesis submitted for the Degree of Doctor of Philosophy. Cardiff University, August 2019, 303 p.
Morris D.A. Organic diagenesis of Miocene sediments from Site 341, Wring Plateau, Norway. In: M.Talwani, G.Udintsev et al., Initial Reports of the DSDP, Vol. 38, Washington (U.S. Government Printing Office), 1976, pp. 809-814.
Ogbesejana A.B., Bello O.M., Ali T. Origin and depositional environments of source rocks and crude oils from Niger Delta Basin: Carbon isotopic evidence. China Geology, Vol. 3, No. 4, 2020, pp. 602-610.
Pagani M., Freeman K.H., Arthur M.A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, Vol. 285, No. 5429, 1999, pp. 876-879.
Peters K.E., Lillis P.G., Lorenson T.D., Zumberge J.E. Organofacies and paleoclimate controlled genetic oil families in the onshore/offshore Santa Maria Basins, California. Schlumberger-Stanford University–U.S. Geological Survey–Geomark Research LLC, 2018.
Philp R.P., Jarde E. Application of stable isotopes and radioisotopes. In: Introduction to environmental forensics (B.Murphy, R.Morrison, eds.). Elsevier. New York, NY, USA, 2015, pp. 455-512, DOI:10.1016/B978-0-12-404696-4.
Sachsenhofer R.F., Popov S.V., Ćorić S., Mayer J., Misch D. et al. Paratethyan petroleum source rocks: an overview. Journal of Petroleum Geology, Vol. 41, No. 3, 2018, pp. 219-245, DOI:10.1111/jpg.12702.
Schouten S., Schoell M., Rijpstra W.I.C., Damste S J.S., De Leeuw J.W. A molecular stable carbon isotope study of organic matter in immature Miocene Monterey sediments, Pismo basin. Geochimica et Cosmochimica Acta, Vol. 61, No. 10, 1997, pp. 2065-2082.
Schwartz D.E. Lithology, petrophysics, and hydrocarbons in cyclic Belridge Diatomite, south Belridge oil field, Kern Co., California. Fourth International Congress on Pacific Neogene Stratigraphy, Berkeley, CA, July 29-31 1987, Abstract 102.
Shackleton N.J., Kennett J.P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. In: (J.P.Kennett, R.E.Houtz et al.) Init. Repts. DSDP, 29, Washington (U.S. Government Printing Office), 1975, pp. 743-755.
Silverman S.R., Epstein S. Carbon isotopic compositions of petroleums and other sedimentary organic materials. AAPG Bulletin, Vol. 42, 1958, pp. 998-1012.
Spiker E.C., Kotra R.K., Hatcher P.G., Gottfried R.M., Horan M.F., Olsen P.E. Source of kerogen in Black shales from the Hartford and Newark basins, eastern United States. In: Studies of the Early Mesozoic Basins of the Eastern United States U.S. (A.J.Froelich, G.R.Robinson, eds.). Geological Survey Bulletin, Vol. 1776, 1988, pp. 63-68.
Timoshina I.D. Geochemistry of organic matter of oil-producing rocks and oils of the Upper Precambrian in the south of Eastern Siberia. Publishing House SB RAS. Novosibirsk, branch"Geo", 2005, 166 p.
Tulan E. Evaluation of diatom-rich Oligocene to Miocene hydrocarbon source rocks in the Paratethys. Doctoral Thesis. Montan Univercity Leoben, 2020, 210 p.
Vail P.R., Hardenbol J. Sea-level changes during the Tertiary. Oceanus, Vol. 22, 1979, pp. 71-79.
Veto I., Báldi K., Coric S., Hetényi M., Demény A., Futo I. (2016) Benthic algae as major precursors of oil-prone kerogen – A case study from the Hungarian Middle Miocene. Central European Geology, Vol. 59, No.1-4, 1979, pp. 87-107, DOI: 10.1556/24.59.2016.004.
Więcław D., Kotarba M.J., Kowalski A., Koltun Y.V. Origin and maturity of oils in the Ukrainian Carpathians and their Mesozoic basement. Geological Quarterly, Vol. 56, No. 1, 2012, pp. 158-168.
Younes M.A. Crude oil geochemistry dependent biomarker distributions in the Gulf of Suez, Egypt. In: Crude oil exploration in the world (M.Younes, ed.). ISBN: 978-953-51-0379-0, InTech., 2012, 220 p.
Zachos J., Pagani M., Sloan L. et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, Vol. 292, 2001, pp. 686-693.
Zdanaviciutė O., Bojesen-Koefoed J.A. Geochemistry of Lithuanian oils and source rocks: preliminary assessment. Journal of Petroleum Geology, Vol. 20, No. 4, 1997, pp. 381-402.
Афанасенков А.П., Жеглова Т.П., Петров А.Л. Углеводороды-биомаркеры и изотопный состав углерода битумоидов и нефтей мезозойских отложений западной части Енисей-Хатангской нефтегазоносной области. Георесурсы, 2019, Том. 21, No. 1. c. 47-63.
Баженова О.К. Нефтегазоматеринский потенциал и нефтегазоносность. В кн.: Кайнозой Сахалина и его нефтегазоносность (под ред. Ю.Б.Гладенкова). ГЕОС, Москва, 2002, с. 137-194.
Голышев С.И., Падалко Н.Л., Мадишева Р.К., Оздоев С.М., Портнов В.С., Исаев В.И. Изотопный состав нефтей Арыскумского прогиба (Южный Казахстан). Известия Томского политехнического университета, Инжиниринг георесурсов, Том 331, No. 3, 2020, c. 80-89.
Диатомит. Геологический словарь. Том 1. Недра. Москва, 1978, 227 с.
Жузе А.П. Диатомовые водоросли. В: Атлас породообразующих организмов (известковых и кремнёвых). Наука. Москва, 1973, c. 89-91.
Конторович А.Э., Костырева Е.А., Сараев С.В., Меленевский В.Н., Фомин А.Н. Геохимия органического вещества кембрия Предъенисейской субпровинции (по результатам бурения скважин Восток-1 и Восток-3). Геология и геофизика, Том 52, No. 6, 2011, с. 737-750.
Мадишева Р.К. Исследование геодинамической обстановки осадконакопления и формирования нефтегазоносности доюрского комплекса Арыскумского прогиба. Диссертация на соискание степени доктора философии. Карагандинский Технический Университет. Республика Казахстан. Караганда. 2020, 99 c.
Маслов В.П. Кремневые организмы: общие замечания. Атлас породообразующих организмов (известковых и кремневых). Наука. Москва, 1973, 89 с.
Обласовa Н.В., Гончаровa И.В., Дердуга А.В., Куницына И.В. Генетические типы нефтей восточной части Крымско-Кавказского региона. Геохимия, Том. 65, No. 11, 2020, с. 1129-1150.
Томкеев С.И. Петрологический англо-русский толковый словарь. В 2-х томах. Т. 1. Мир. Москва, 1986, 285 с.
DOI: 10.33677/ggianas20240100108