№ 2,
2020
Скачать статью
Tектоника плит и эволюция земли: концептуальный обзор
1 — Universal Geoscience and Environment Consulting Company, Онтарио, Канада М2М4В1, Канада, Онтарио, Виллоудале, Хилда ав., 205: lpilchin@gmail.com
2 — Отделение Наук о Земле, Факультет точных наук, Тель-Авивский Университет 6997801, Израиль Тель-Авив, Рамат Авив: levap@tauex.tau.ac.il
3 — Азербайджанский государственный университет нефти и промышленности AZ1010, Азербайджан, г. Баку, пр. Азадлыг, 20
2 — Отделение Наук о Земле, Факультет точных наук, Тель-Авивский Университет 6997801, Израиль Тель-Авив, Рамат Авив: levap@tauex.tau.ac.il
3 — Азербайджанский государственный университет нефти и промышленности AZ1010, Азербайджан, г. Баку, пр. Азадлыг, 20
Резюме
A-
A+
На протяжении последних столетий предпринимались многочисленные попытки осознать закономерности тектоно-геодинамических процессов, происходящих на Земле. Хотя ни одна парадигма не дала исчерпывающих ответов на все вопросы, настоящий обзор призван познакомить читателей с современным состоянием развития тектонических представлений об эволюции Земли. Надо отметить, что эволюция ранней Земли характеризовалась рядом уникальных процессов, характеризующихся неконвенциональными параметрами. Однако физико-химико-геологические параметры большинства из них были в значительной степени утрачены (стерты) в ходе последующей эволюции Земли; некоторые процессы оставили лишь слабые следы своего существования и некоторые остаточные эффекты (особенно те, что имели место в катерхее и раннем-позднем архее). Среди таких процессов можно отметить планетарную аккрецию Земли, образование ряда уникальных горных комплексов, инициирование процесса тектоники плит, появление основных сил, движущих тектонику плит, значительное влияние тепловых параметров, роль избыточного давления в различных физико-геологических условиях, стратификацию земной коры и литосферы по плотности и ряд других термодинамических процессов. Почти все они остаются недостаточно исследованными ввиду значительной неопределенности в сроках и способах их эволюции, а также неоднозначности их вторичных показателей и тектоногеофизических характеристик. В то же время многие тектоно-геодинамические процессы и параметры были и остаются взаимосвязанными, и одновременное изменение множества различных факторов играло существенную роль в их воздействии на геологическую среду. Некоторые из этих сложных вопросов обсуждаются в данной статье. Например, какова роль феномена тектоники плит и когда на Земле начался этот процесс? Особое внимание в обзоре уделено непростым методам анализа природы тектонических процессов, применяемым учеными-геологами на протяжении многих поколений. В проведенном обзоре также использовались некоторые физические параметры, полученные на других планетах Солнечной системы.
Ключевые слова: тектоника плит, основные движущие силы, термодинамические модели, роль плотности, модели глубинного строения, ранняя эволюция Земли
ЛИТЕРАТУРА
Alvarez W. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. Journ. of Geophysical Research, Vol. 87, No. B8, 1982, pp. 6697-6710.
Alvarez W. Geologic evidence for the plate-driving mechanism: The continental undertow hypothesis and the Australian-Antarctic discordance. Tectonics, Vol. 9, No. 5, 1990, pp. 1213-1220.
Anderson D.L. Theory of the Earth. Blackwell Scientific Publ. Boston, USA, 1989, 366 p.
Anderson D.L. Top-Down tectonics? Science, Vol. 293, 2001, pp. 2016-2018.
Anderson D.L. Plate tectonics as a far- from- equilibrium self-organized system. In: (Stein S. and Freymueller J.T. Eds.) Plate boundary zones. Geodynamics series 30, the American Geophysical Union, Geophys. Monograph, Washington, DC, 2002, pp. 411-425.
Anderson D.L. New theory of the Earth. Cambridge Univ. Press. 2nd ed., NY, USA, 2007, 400 p.
Anderson D.L., Tanimoto T., Zhang Y.S. Plate tectonics and hotspots: the third dimension. Science, Vol. 256, No. 5064, 1992, pp.1645-1651.
Arndt N.T. and Nisbet E.G. Processes on the young Earth and the habitats of early life. Annual Rev. of Earth Planetary Sci., Vol. 40, 2012, pp. 521-549.
Artyushkov E.V., Mörner N.A., Tarling D.H. The cause of loss of lithospheric rigidity in areas far from plate tectonic activity. Geophysical Jour. International, Vol. 143, No. 3, 2000, pp. 752-776.
Bell E.A. Hadean-Archean transitions: Constraints from the Jack Hills detrital zircon record. Ph.D. thesis, University of California, Los Angeles, 2013, 299 p.
Benioff H. Seismic evidence for the fault origin of oceanic deeps. Bull. of the Geol. Society of America, Vol. 60, 1949, pp. 1837-1866.
Benioff H. Orogenesis and deep crustal structure – Additional evidence from seismology. Bull. of the Geol. Society of America, Vol. 65, 1954, pp. 385-400.
Bercovici D. The generation of plate tectonics from mantle convection. Earth and Planet. Science Lett., Vol. 205, No. 3-4, 2003, pp. 107-121.
Bercovici D. Mantle convection. In: (Gupta H.K., Ed.), Encyclopedia of Solid Earth Geophysics, Springer. 2011, pp. 832-851.
Bercovici D., Ricard Y., Richards M.A. The relation between mantle dynamics and plate tectonics: A primer. In: (Richards, M., Gordon, R. and van der Hilst, R., Eds.), The history and dynamics of global plate motions. Geophys. Monograph 121, American Geophysical Union, 2000, pp. 5-46.
Bina C.R., Stein S., Marton F.C., Van Ark E.M. Implications of slab mineralogy for subduction dynamics. Physics of the Earth and Planet. Interiors, Vol. 127, No. 1-4, 2001, pp. 51-66.
Bindeman I.N., Eiler J.M., Wing B.A., Farquhar J. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochim. et Cosmochim. Acta, Vol. 71, No. 9, 2007, pp. 2326-2343.
Bird P. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. Journ. of Geophysical Research, Vol.103, No. B5, 1998, pp. 10115-10129.
Bokelmann G.H.R. Which forces drive North America? Geology, Vol. 30, No. 11, 2002, pp.1027-1030.
Bott M.H.P. Modeling the plate-driving mechanism. Journ. of the Geological Society, Vol. 150, No. 5, 1993, pp. 941-951.
Buiter S.J.H., Govers R., Wortel M.J.R. A modelling study of vertical surface displacements at convergent plate margins. Geophys. Jour. Intern., Vol. 147, 2001, pp. 415-427.
Bull A.J. A hypothesis of mountain building. Geol. Magazine, Vol. 58, 2001, pp. 364-367.
Burke K. Plate tectonics, the Wilson cycle, and mantle plumes: geodynamics from the top. Ann. Review of Earth and Planetary Sci., Vol. 39, No. 1, 2011, pp. 1-29.
Calvert A.J., Sawyer E.W., Davis W.J., Ludden J.N. Archean subduction inferred from seismic images of a mantle suture in the Superior Province. Nature, Vol. 375, No. 6533,1995, pp. 670-674.
Carlson R.L. Boundary forces and plate velocities. Geophysical Research Lett., Vol. 8, 1981, pp. 958-961.
Carlson R.W., Pearson D.G., James D.E. Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics, Vol. 43, RG1001, 2005, pp. 1-24.
Carr M.H. Water on Mars. Oxford Univ. Press. N.Y., USA, 1996, 197 p.
Cartwright N. How the laws of physics lie. Oxford University Press. Oxford, UK, 1983, 230 p.
Catling D. Atmospheric evolution of Mars. In: Encyclopedia of Paleoclimatology and Ancient Environments. Kluwer Acad. Publisher. 2004, pp.1-16.
Cawood P.A., Kröner A., Pisarevsky S. Precambrian plate tectonics: Criteria and evidence. Geol. Soc. of Amer. Today, Vol. 16, No. 7, 2006, pp. 4-11.
Chapple W.M., Tullis T.E. Evaluation of the forces that drive the plates. Journ. of Geophysical Research, Vol. 82, 1977, pp. 1967-1984.
Chase C.G. Extension behind island arcs and motions relative to hot spots. Journ. of Geophysical Research, Vol. 83, No. B11, 1978, pp .5385-5387.
Clayton R.N., O’Neil J.R., Mayeda T.K. Oxygen isotope exchange between quartz and water. Journ. of Geoph. Research, Vol. 77, No. 17, 1972, pp. 3057-3066.
Clifford S.M., Parker T.J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus, Vol. 154, 2001, pp. 40-79.
Cloetingh S., Wortel R. Stress in the Indo-Australian plate. Tectonophysics, Vol. 132, No. 1-3, 1986, pp. 49-67.
Cogné J.P., Humler E., Courtillot V. Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup. Earth and Planetary Sci. Lett., Vol. 245, 2006, pp. 115-122.
Condie K.C. Benioff zone. In: Encyclopedia of Earth Science, Structural Geology and Tectonics, 1987, pp. 29-33.
Condie K.C. Origin of the Earth’s crust. Global and Planetary Change, Vol. 1, No. 1-2, 1989, pp. 57-81.
Condie K.C., Kröner A. When did plate tectonics begin? Evidence from the geologic record. In: (Condie, K.C. and Pease, V., Eds.), When did plate tectonics begin on planet Earth? Geol. Soc. of Amer. Bull., Vol. 440, 2008, pp. 281-294.
Conrad C.P., Lithgow-Bertelloni C. How mantle slabs drive plate tectonics. Science, Vol. 298, No. 5591, pp. 207-209.
Cox A. Plate tectonics and geomagnetic reversals. W.H.Freeman and Co publishers. US, 1973, 702 p.
Cox A., Hart R.B. Plate tectonics: how it works. Wiley-Blackwell publications. 1986, 392 p.
Cruciani C., Carminati E., Doglioni C. Slab dip vs. lithosphere age: no direct function. Earth and Planetary Science Lett., Vol. 238, No. 3-4, 2005, pp. 298-310.
Daly R.A. Geology of the North American Cordillera at the Forty-Ninth Parallel. Canada Geol. Survey Mem., Vol. 38, 1912, p. 481; pp. 489-490; p. 570; pp. 572-573.
Dana J.D. 1873. On some results of the Earth’s contraction from cooling, including a discussion of the origin of mountains and the nature of the Earth’s interior. Amer. Jour. of Sci., Vol. 5, pp. 423-443; Vol. 6, pp. 6-14; pp. 104-115; pp. 161-172.
Davies G.F. Thermal histories of convective earth models and constraints on radiogenic heat production in the Earth. Journ. of Geophys. Research, Vol. 85, No. B5, 1980, pp. 2517-2530.
Davies G.F. On the emergence of plate tectonics. Geology, Vol. 20, 1992, pp. 963-966.
Davies G.F. Dynamic Earth: plates, plumes and mantle convection. Cambridge Univ. Press. Cambridge, UK. 1999, 458 p.
Davies G.F. Mantle convection for geologists. Cambridge Univ. Press. New York, USA, 2011, 232 p.
Dewey J.F. Lithospheric stress, deformation, and tectonic cycles: the disruption of Pangaea and the closure of Tethys. Geological Society, London, Special Publications, Vol. 37, 1988 , 23-40.
de Wit M.J. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambrian Research, Vol. 91, 1998, pp.181-226.
Dietz R.S. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190, 1961, pp. 854-857.
Dohm J.M., Spagnuolo M.G., Williams J.-P., Viviano-Beck C.E., Karunatillake S., Álvarez O., Anderson R.C., Miyamoto H., Baker V.R., Fairén A., Mahaney W.C., Hare T.M., Robbins S.J., Niihara T., Yin A., Judice T., Olsen N., Maruyama S. The Mars plate tectonic – basement hypothesis. 46th Lunar and Planetary Science Conference, held March 16-20, 2015 in The Woodlands, Texas. LPI Contribution No. 1832, 2015, p.1741.
Ducea M.N., Saleeby J. Trace element enrichment signatures by slab-derived carbonate fluids in the continental mantle wedge: an example from the Sierra Nevada, California. Trans. of the Ann. Meet. of the Geol. Soc. of America, Seattle, Vol. 35, No. 6, 2003, p. 138.
Dunlop D.J. Continuous and stepwise thermal demagnetization: are they equivalent? Geophys. Jour. Intern., Vol. 177, No. 3, 2009, pp. 949-957.
Ehlmann B.L., Mustard J.F., Murchie S.L. Geologic setting of serpentine deposits on Mars. Geophysical Research Lett., V. 37, L06201, 2010, pp. 1-5.
Elsasser W.M. Convection and stress propagation in the upper mantle. Princeton University Technical Report, Vol. 5, 1967, 130 p.
Elsasser W.M. Convection and stress propagation in the upper mantle. In: (Runcorn, S. K. Ed.) The application of modern physics to the Earth and planetary interiors. Wiley-Interscience, New York, 1969, pp. 223-246.
Elsasser W.M. Sea-floor spreading as thermal convection. Journ. of Geophysical Research, Vol. 76, No. 5, 1971, pp. 1101-1112.
Eppelbaum L.V. Comparison of 3D integrated geophysical modeling in the South Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan tectonic belt. Azerb. Nation. Academy of Sci. Proceedings. The Sciences of Earth, No. 3, 2015, pp. 25-45.
Eppelbaum L.V., Ben-Avraham Z., Katz Y., Cloetingh S., Kaban M. Combined multifactor evidence of a Giant Lower-Mantle Ring Structure below the Eastern Mediterranean. Positioning, Vol. 11, 2020, pp. 11-32.
Eppelbaum, L., Isakov A. Implementation of the geocorrelation methodology for predictability of catastrophic weather events: long-term US tornado season and short-term hurricanes. Environmental Earth Sciences, Vol. 74, 2015, pp. 3371-3383.
Eppelbaum L.V., Katz Yu.I. Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Marine and Petroleum Geology, Vol. 65, 2015a, pp. 198-216.
Eppelbaum L.V., Katz Yu.I. Paleomagnetic mapping in various areas of the Easternmost Mediterranean based on an integrated geological-geophysical analysis. In: (Eppelbaum L., Ed.), New Developments in Paleomagnetism Research, Ser: Earth Sciences in the 21st Century. Nova Science Publisher. NY, 2015b, pp.15-52.
Eppelbaum L., Katz Yu. Significant tectono-geophysical features of the African-Arabian tectonic region: An overview. Geotectonics, Vol. 54, No. 2, 2020, pp. 266-283.
Eppelbaum L., Kutasov I., Pilchin A. Applied geothermics. Springer. Heidelberg – N.Y., 2014, 751 p.
Eppelbaum L.V., Nikolaev A.V., Katz Y.I. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), Vol. 457, No. 6, 2014, pp. 710-714.
Ernst W.G. Do mineral parageneses reflect unusually high-pressure conditions of Franciscan metamorphism? Amer. Jour. of Science, Vol. 270, 1971, pp. 81-108.
Ernst W.G. Archean plate tectonics, rise of Proterozoic super-continentality and onset of regional, episodic stagnantlid behavior. Gondwana Research, Vol. 15, No. 3-4, 2009, pp. 243-253.
Fehlhaber K., Bird D.K. Oxygen-isotope exchange and mineral alteration in gabbros of the Lower Layered Series, Kap Edvard Holm Complex, East Greenland. Geology, Vol. 19, No. 8, 1991, pp. 819-822.
Fisher O. On the possibility of changes in the latitudes of places on the Earth’s surface: being an appeal to physicists. Geo-logical Magazine, Vol. 5, No. 7, 1878, pp. 291-297.
Fisher O. Physics of the Earth’s crust. Macmillan and Co. London, UK, 1881, 391 p.
Foley B.J., Bercovici D., Elkins-Tanton L.T. Initiation of plate tectonics from post-magma ocean thermo-chemical convection. Journal of Geophysical Research: Solid Earth, V. 119, No. 11, 2014, pp. 8538-8561.
Fowler A.C., O’Brien S.B.G. A mechanism for episodic subduction on Venus. Journ. of Geophysical Research, Vol. 101, 1996, pp. 4755-4763.
Frank B.Taylor. American geologist. Encyclopædia Britannica, 2015.
Frankel H.R. The continental drift controversy, V. 1: Wegener and the early debate. Cambridge Univ. Press. Cambridge, UK, 2012, 625 p.
Forsyth D., Uyeda S. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astr. Soc., Vol. 43, 1975, pp. 163-200.
Gallagher V., Feely M., Högelsberger H., Jenkin G.R.T., Fallick A.E. Geological, fluid inclusion and stable isotope studies of Mo mineralisation, Galway Granite, Ireland. Mineral. Deposita, Vol. 27, 1992, pp. 314-325.
Glen W. The origins and early trajectory of the mantle plume quasi-paradigm. In: (Foulger G.R., Natland J.N., Presnal D.C., Anderson D.L., Eds.), Plates, plumes, and paradigms. The Geological Society of America Spec. volume 388, The Geol. Society of America, Boulder, Colorado, USA, 2005, pp. 91-117.
Gnibidenko H.S., Shashkin K.S. Basic principles of the geosynclinal theory. Tectonophysics, Vol. 9, No. 1, 1970, pp. 5-13.
Grotzinger J.P., Kasting J.F. New constraints on Precambrian ocean composition. The Journal of Geology, Vol. 101, 1993, pp. 235-243.
Grove T.L., Parman S. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett., Vol. 219, 2004, pp. 173-187.
Gurney J.J., Moore R.O., Otter M.L., Kirkley M.B., Hops J.J., McCandless T.E. Southern African kimberlites and their xenoliths. In: (Kampunzu A.B. and Lubala R.T., Eds.) Magmatism in extensional structural settings. Springer. Berlin, 1991, pp. 495-536.
Gurnis M., Hall C., Lavier L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst., Vol. 5, No. 7, Q07001, 2004, pp. 1-31.
Gutenberg B., Benioff H., Burger J. M., Griggs D. Colloquium on plastic flow and deformation within the Earth. Eos Trans. of the American Geophysical Union, Vol. 32, No. 4, 1951, pp. 497-543.
Gutzmer J., Banks D., de Kock M.O., McClung C.R., Strauss H., Mezger K. The origin and paleoenvironmental significance of stratabound barites from the mesoarchean fig tree group, Barber-ton mountainland, South Africa. Trans. of the V South American Symp. on Isotope Geology, contrib. Vol. 311, 2006, pp. 258-262.
Hacking I. Representing and intervening. Introductory topics in the philosophy of natural science. Cambridge Univ. Press. Cambridge, 1983, 286 p.
Hall J. Natural History of New York: Paleontology, Vol. 3, pt. 1, 1859, pp. 66-96.
Hamilton W.B. Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, Vol. 91, 1998, pp. 143-179.
Hamilton W.B. The closed upper-mantle circulation of plate tectonics. In: (Stein S. and Freymueller J.T., Eds.), Plate Boundary Zones, Geodynamics Series, Vol. 30, 2002, pp. 359-410.
Hamilton W.B. Driving mechanism and 3-D circulation of plate tectonics. Geol. Soc. America Special Paper Vol. 433, 2007a, pp. 1-25.
Hamilton W.B. Earth’s first two billion years – The era of internally mobile crust. In: (Hatcher R.D., Jr., Carlson M.P., McBride J.H., Martínez Catalán J.R., Eds.), 4-D Frame-work of Continental Crust, Geol. Society of America Memoir, Vol. 200, 2007b, pp. 233-296.
Hamilton W. B. Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos, Vol. 123, No. 1-4, 2011, pp. 1-20.
Harrison T. M., Blichert-Toft J., Müller W., Albarede F., Holden P., Mojzsis S.J. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science, Vol. 310, No. 5756, 2005, pp. 1947-1950.
Harrison T.M., Blichert-Toft J., Müller W., Albarede F., Holden P., Mojzsis S.J. Response to Comment on “Heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga”. Science, 312, No. 5777, 2006, pp. 1139.
Harrison T.M., Watson E.B. Crystallization temperatures of hadean zircons: possible plate boundary interactions between 4.4 and 4.0 Ga. Proceed. of the Geol. Soc. of America Ann. Meet., Salt Lake City, Vol. 37, No. 7, 2005, p. 309.
Hasegawa A., Takagi A. Comparison of Wadati-Benioff zone geometry and distribution of earthquake generating stress beneath northeastern Japan and those beneath western South America. Tohoku Geophys. Jour., Vol. 31, 1987, pp. 1-18.
Herndon J.M. Inseparability of science history and discovery. Hist. Geo. Space Sci., Vol. 1, 2010, pp. 25-41.
Hess H.H. History of ocean basins. In: Petrologic studies: a volume to honor A.F.Buddington. Boulder, CO, Geol. Society of America. 1962, pp. 599-620.
Hey R.N. Seafloor spreading. In: (Gupta H., Ed.) Encyclopedia of solid earth geophysics, Springer. Dordrecht, 2011, pp. 1055-1059.
Holmes A. Radioactivity and continental drift. Geological Magazine, Vol. 65, 1928a, pp. 236-238.
Holmes A. Continental drift. Nature, Vol. 122, 1928b, pp. 431-433.
Holmes A. A review of the continental drift hypothesis. The Mining Magazine, Vol. 40, 1929, pp. 205-209, pp. 286-288, pp. 340-347.
Holmes A. Radioactivity and earth movements. Trans. of the Geological Society of Glasgow for 1928-29, Vol. 18, 1931, pp. 559-606.
Holmes A. Principles of physical geology. Thomas Nelson. London, UK, 1944, 532 p.
Hopkins W. Researches in physical geology. Philos. Trans. R. Soc. London, Vol. 129, 1839, pp. 381-385.
Hopkins W. Report on the geological theories of elevation and earthquakes. Report to the British Association for 1847. 1847, pp. 33-92.
Isacks B., Oliver J., Sykes L.R. Seismology and the new global tectonics. Jour. of Geophysical Research, Vol. 73, No. 18, 1968, pp. 5855-5899.
Jacobs J.A., Russell R.D., Wilson J.T. Physics and geology. 2nd ed. McGraw-Hill. NY, 1973, 622 p.
Jacoby W.R. Plate sliding and sinking in mantle convection and the driving mechaism. In: (Davis P.A., Runcorn F.R.S., Eds.). Mechanisms of continental drift and plate tectonics, Academic Press. NY, 1980, pp. 159-172.
Jeffreys H. On the Earth’s thermal history and some related geological phenomena. Gerlands Beiträge zur Geophysik, Vol. 18, 1927, pp. 1-29.
Joly J. Radioactivity and Geology. Archibald Constable and Co. London, UK, 1909, 287 p.
Jordan T.H., Lerner-Lam A.L., Creager K.C. Seismic imaging of boundary layers and deep mantle convection. In: (Peltier W.R., Ed.) Mantle convection: plate tectonics and global dynamics. The fluid mechanics of astrophysics and geophysics. Vol. 4, Gordon and Breach Science Publishers. 1989, pp. 97-201.
Jordan T.H., Lerner-Lam A.L., Creager K.C. Seismic imaging of boundary layers and deep mantle convection. In: (Peltier W.R., Ed.) Mantle convection: plate tectonics and global dynamics. The fluid mechanics of astrophysics and geophysics. Vol. 4, Gordon and Breach Science Publishers. 1989, pp. 97-201.
Jurdy D., Stefanick M. The forces driving the plates: Constraints from kinematics and stress observations. Philos. Trans. R. Soc., London, Ser. A, Vol. 337, 1991, pp. 127-138.
Kearey Ph., Klepei S.K., Vine F.J. Global tectonics. 3rd ed. Willey-Blackwell. Singapore, 2009, 496 p.
Keppie D.F. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea. Geology, Vol. 43, No. 4, 2015, pp. 335-338.
Kerr R.A. Earth’s surface may move itself. Science, Vol. 269, 1995, pp. 214-1216.
Kirdyashkin A.A., Kirdyashkin A.G. Forces acting on a subducting oceanic plate. Geotectonics, Vol. 48, No. 1, 2014, pp. 54-67.
Klein C. Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry and origin. American Mineralogist, Vol. 90, No. 10, 2005, pp. 1473-1499.
Knauth L.P., Lowe D.R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bull. of the Geol. Soc. of Amer., Vol. 115, No. 5, 2003, pp. 566-580.
Knight J.T., Ridley J.R., Groves D.I. The Archean amphibolite facies Coolgardie Goldfield, Yilgarn Craton, Western Australia: nature, controls, and gold field-scale patterns of hydrothermal wall-rock alteration. Economic Geology, Vol. 95, No. 1, 2000, pp. 49-84.
Knopf A. Analysis of some recent geosynclinal theory. American Journ. of Science, Bradley Vol. 258-A, 1960, pp. 126-136.
Knopoff L. The convection current hypothesis. Reviews of Geo-physics, Vol. 2, 1964, pp. 89-123.
Korenaga J. Plate tectonics, flood basalts and the evolution of Earth’s oceans. Terra Nova, Vol. 20, No. 6, 2008, pp. 419-439.
Kröner A., Layer P.W. Crust formation and plate motion in the Early Archean. Science, Vol. 256, No. 5, 1992, pp. 1405-1411.
Lambert I.B. Early geobiochemical evolution of the Earth. Revista Brasileira de Geociências, Vol. 12, 1982, pp. 32-38.
Lee Ch. Effects of radiogenic heat production and mantle compressibility on the behaviors of Venus’ and Earth’s mantle and lithosphere. Geosciences Journ., Vol. 18, No. 1, 2014, pp. 13-30.
Le Pichon X. Sea-floor spreading and continental drift. Journ. of Geophysical Research, Vol. 73, No. 12, 1968, pp. 3661-3696.
Leviton A., Aldrich M., Laudan R. Frank Bursley Taylor’s theory of continental drift. Earth Sciences History, Vol. 4, No. 2, 1985, pp. 118-121.
Lithgow-Bertelloni C., Richards M.A. Cenozoic plate driving forces. Geophys. Research Lett., Vol. 22, No. 11, 1995, pp. 1317-1320.
Liu L. The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth and Planet. Sci. Lett., Vol. 227, No. 3-4, 2004, pp. 179-184.
Lowe D.R. Early environments: Constraints and opportunities for early evolution. In: Early life on Earth. Nobel Symposium, No.84 (Bengston S., Ed.), Columbia Univ. Press, N.Y., 1994, pp. 10-23.
Lyttleton R.A., Bondi H. How plate tectonics may appear to a physicist. Journ. of the British Astronomical Assoc., Vol. 102, No. 4, 1992, pp. 194-195.
Lyubetskaya T., Korenaga J. Chemical composition of Earth’s primitive mantle and its variance: 2. Implications for global geodynamics. Journ. of Geophysical Research, Vol. 112, No. B03211, 2007, DOI: 10.1029/2005JB004223.
Mahatsente R., Ranalli G. Time evolution of negative buoyancy of an oceanic slab subducting with varying velocity. Journ. of Geodynamics, Vol. 38, No. 2, 2004, pp. 117-129.
Mallet J.L. Numerical earth models. Europ. Assoc. of Geoscientists and Engin. EAGE Publications. 2008, 148 p.
Mariano G., Sial A.N., Herz N. Oxygen isotope geochemistry of a potássio porphyritic calc-alkalic composite pluton: the itaporanga batholith, state of Paraíba, northeastern Brazil. Revista Brasileira de Geociências, Vol. 20, No. 1-4, 1990, pp.159-164.
Maruyama S., Santosh M., Azuma S. Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers, Vol. 9, 2018, pp.1033-1048.
McKenzie D.P. Speculations on the consequences and causes of plate motions. Geophysical Journ. of the Royal Astron. Soc., Vol. 18, No. 1, 1969, pp. 1-32.
McKenzie D.P. Plate tectonics and its relationship to the evolution of ideas in the geologic sciences. Daedalus, Vol. 106, No. 3, 1977, pp. 97-124.
McKenzie D., Parker, R.L. The North Pacific: an example of tectonics on a sphere. Nature, Vol. 216, 1967, pp. 1276-1280.
Meijer P.T., Wortel M.J.R. Dynamics of the South American plate. Journ. of Geophys. Research, Vol. 97, 1992, pp. 11915-11931.
Meissner R. The little book of planet Earth. Copernicus Books. NY, USA, 2002, 204 p.
Meyerhoff A.A., Meyerhoff H.A. Plate tectonics, evidence against. Structural geology and tectonics. In: Encyclopedia of Earth Science, 1987, pp. 549-560.
Mojzsis S.J., Coath C.D., Greenwood J.P., McKeegan K.D., Harrison T.M. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. et Cosmoch. Acta, Vol. 67, No. 9, 2003, pp. 1635-1658.
Morgan W.J. Rises, trenches, great faults, and crustal blocks. Journ. of Geophys. Research, Vol. 73, No. 6, 1968, pp. 1959-1982.
Morse J.W., Mackenzie F.T. Hadean Ocean carbonate geochemistry. Aquatic Geochemistry, Vol. 4, No. 3-4, 1998, pp. 301-319.
Müller R.D., Sdrolias M., Gaina C., Roest W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, Vol. 9, No. 4, 2008, pp.1-19.
Nance R.D., Murphy B. Origins of the supercontinent cycle. Geoscience Frontiers, Vol. 4, No. 4, 2013, pp. 439-448.
Nebel O., Rapp R.P., Yaxley G.M. The role of detrital zircons in Hadean crustal research. Lithos, 2014, pp. 190-191; 313-327.
Nisbet E.G., Sleep N.H. The habitat and nature of early life. Nature, Vol. 409, 2001, pp. 1083-1091.
Nunn J.F. Evolution of the atmosphere. Proceed. of Geol Assoc., Vol. 109, No. 1, 1998, pp. 1-13.
Nutman A.P., Friend C.R.L., Bennett V.C. Evidence for 3650-3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: implication for early Archean tectonics. Tectonics, Vol. 21, 2002, pp. 1-28.
Nutman A.P., Mojzsis S.J., Friend C.R. Recognition of ≥ 3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochim. et Cosmochim. Acta, Vol. 61, No. 12, 1997, pp. 2475-2484.
O’Neil J., Carlson R.W. The Nuvvuagittuq Greenstone Belt: A case of Hadean subduction? GSA Annual Meeting in Vancouver, British Columbia (19-22 October 2014). Geol. Soc. of America Abstracts with Programs, Vol. 46, No. 6, 2014, p.282.
Ortelius A. Thesaurus Geographicus Leaf Nnn verso. 3rd ed. Plantin. Antwerp, Belgium, 1596.
Pastor-Galán D., Nance R.D., Murphy J.B., Spencer C.J. Super-continents: myths, mysteries, and milestones. Geological Society of London, Special Publication, Vol. 470, 2018, 1-27.
Pastor-Galán D., Nance R.D., Murphy J.B., Spencer C.J. Super-continents: myths, mysteries, and milestones. Geological Society of London, Special Publication, Vol. 470, 2018, 1-27.
Pearson D.G., Canil D., Shirey S.B. Mantle samples included in volcanic rocks: xenoliths and diamonds. In: (Carlson R.W., Ed.) Treatise on geochemistry, Vol. 2, The Mantle. Elsevier. N.Y., 2003, pp. 171-277.
Pechersky D.M., Eppelbaum L.V. Peering into the past: what happened to the Moon 3.6 billion years ago? Positioning, Vol. 9, No. 3, 2018, pp. 73-78.
Pechersky D.M., Eppelbaum L.V. Peering into the past: what happened to the Moon 3.6 billion years ago? Positioning, Vol. 9, No. 3, 2018, pp. 73-78.
Peck W.H., Valley J.W., Wilde S.A., Graham C.M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high H18O continental crust and oceans in the Early Archean. Geochim. et Cosmochim. Acta, Vol. 65, No. 22, 2001, pp. 4215-4229.
Petrini K., Podladchikov Yu. Lithospheric pressure-depth relationship in compressive regions of thickened crust. Jour. of Metamorphic Geol., Vol. 18, 2000, pp. 67-78.
Pilchin A.N. The role of serpentinization in exhumation of high- to ultra-high-pressure metamorphic rocks. Earth and Plan. Sci. Lett., Vol. 237, No. 3-4, 2005, pp. 815-828.
Pilchin A.N. Magnetite: The story of the mineral´s formation and stability. In: (Angrove D.M., Ed.) Magnetite: structure, properties and applications. Nova Science Publ., NY, Chapter 1, 2011, pp. 1-99.
Pilchin A. Comparing the tectonic conditions on Venus with tectonic conditions of Early Archean Earth. Trans. of the workshop on comparative tectonics and geodynamics of Venus, Earth, and Rocky Exoplanets. Pasadena, California, USA, Abst. 2015, p. 5003.
Pilchin A. Comparison of thermodynamic conditions of early Venusian atmosphere with those of the early Earth and Mars atmospheres. Trans. of the 47th Lunar and Planetary Sci. Conf., Abstract, 2016a, p. 1042.
Pilchin A. Critical analysis of the plate tectonics model and causes of horizontal tectonic movements. New Concepts in Global Tectonics Journal, Vol. 4, No. 2, 2016b, pp. 204-272.
Pilchin A.N., Eppelbaum L.V. Some peculiarities of thermodynamic conditions in the Earth’s crust and upper mantle. Scientific Israel, No. 1-2, 2002, pp. 117-142.
Pilchin A.N., Eppelbaum L.V. Some causes of initial mantle heterogeneity. Trans. of the 33rd Intern. Geological Conf., Oslo, Norway, EID05422P, 2008.
Pilchin A.N., Eppelbaum L.V. The early Earth and formation of the lithosphere. In: (Anderson J.E., Coates R.W., Eds.) the lithosphere: geochemistry, geology and geophysics. Nova Science Publ., NY, USA, Chapter 1, 2009, pp. 1-68.
Pilchin A., Eppelbaum L. The early Earth formation and evolution of the lithosphere in the Hadean – Middle Archean. In: (Sato F., Nakamura Sh., Eds.), Encyclopedia of Earth Science Research, Vol. 1, Chapter 1, 2012, pp. 1-93.
Pratt D. Plate tectonics: A paradigm under threat. Journ. of Scientific Exploration, Vol. 14, No. 3, 2000, pp. 307-352.
Rapp R.P., Yaxley G.M., Norman M.D. Continent formation in the Archean and chemical evolution of the cratonic lithosphere. Trans. of the 9th Intern. Kimberlite Conf., Extended Abstract, No. 9IKC-A-00341, 2008.
Rayleigh Lord. On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside. The London, Edinburgh and Dublin Phil. Magazine and Jour. of Science, Vol. 32, No. 192, 1916, pp. 529-546.
Richards I.J., Gregory R.T., Ferguson K.M., Douthitt C.B. Archean hydrothermal alteration and metamorphism of the Pilbara block, Western Australia. Proceed. of the GSA Ann. Meet., Paper No. 165-0, 2001.
Richardson R.M. Inversion for the driving forces of plate tectonics. Proc. IEEE Intl. Geosci. and Remote Sensing Symp., II, 1983, p. FA2.3.1-FA2.3.6.
Richardson R.M. Ridge forces, absolute plate motions, and the intraplate stress field. Journ. of Geophysical Research, Vol. 97, 1992, pp. 11739-11748.
Richter F.M. Dynamical models for sea floor spreading. Rev. Geophys. Space Phys., No. 2, 1973, pp. 11 223-11 287.
Riguzzi F., Panza G., Vargan P., Doglioni C. Can Earth’s rotation and tidal despinning drive plate tectonics? Tectono-physics, Vol. 484, 2010, pp. 60-73.
Roger K. Scientific modeling. Encyclopædia Britannica, Inc. 2015.
Romm J. A new forerunner for continental drift. Nature, Vol. 367, No. 6462, 1994, pp. 407-408.
Royden L.H., Husson L. Subduction with variations in slab buoyancy: Models and application to the Banda and Apennine systems. In: (Lallemand S., Funiciello C., Eds.) Subduction zone geodynamics – frontiers in Earth sciences. Springer-Verlag. Berlin — Heidelberg, 2009, pp.35-45.
Santosh M., Maruyama S., Yamamoto S. The making and breaking of supercontinents: some speculations based on super-plumes, super downwelling and the role of tectosphere. Gondwana Research, Vol. 15, No. 3-4, 2009, pp. 324-341.
Schellart W.P. Quantifying the net slab pull force as a driving mechanism for plate tectonics. Geophysical Research Lett., Vol. 31, L07611, 2004, pp. 1-5.
Schubert G., Stevenson D., Cassen P. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. Jour. of Geophys. Research, Vol. 85, No. B5, 1980, 2531-2538.
Schubert G., Turcotte D. L., Olson P. Mantle convection in the Earth and planets. Cambridge Univ. Press, Cambridge, UK, 2001, 940 p.
Schulze D.J. Constraints on the abundance of eclogite in the upper mantle. Journ. of Geophysical Research, Vol. 94, No. B4, 1989, pp. 4205-4212.
Schwarz Ch. V., Reiser B.J., Davis E.A., Kenyon L., Achér A., Fortus D., Shwartz Y., Hug B., Krajcik J., Developing a learning progression for scientific modeling: making scientific model-ing accessible and meaningful for learners. Journ. of Research in Science Teaching, Vol. 46, No. 6, 2009, pp. 632-654.
Skobelin E.A., Sharapov I.P., Bugayov A.F. Deliberations of state and ways of perestroika in geology (Has plate tectonics resulted in a revolution in geology?). In: Critical Aspects of the Plate Tectonics Theory, Vol. 1 – Athens (Greece): Theophrastus Publications, 1990, pp. 17-37.
Sharkov E.V., Bogatikov O.A. Early stages of the tectonic and magmatic development of the Earth and Moon: similarities and differences. Petrology, Vol. 9, No. 2, 2001, pp. 97-118.
Sharp Z.D., Papike J.J., Durakiewicz T. The effect of thermal decarbonation on stable isotope compositions of carbonates. Amer. Mineralogist, Vol. 88, No. 1, 2003, pp. 87-92.
Shervais J.W. The significance of subduction-related accretion-ary complexes in early Earth processes. In: (Reimold W.U., Gibson R.L., Eds.) Processes on the early Earth. Geol. Soc. of America, Special Paper, Vol. 405, 2006 pp. 173-192.
Shirey S.B., Kamber B.S., Whitehouse M.J., Mueller P.A., Basu A.R. A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. In: (Condie K.C., Pease V., Eds.) When did plate tectonics begin on planet Earth? Geol. Soc. of America, Special Paper, Vol. 440, 2008, pp. 1-29.
Silver P.G. Riding the Wilson Cycle; how the theory of plate tectonics continue to evolve. Geotimes, Vol. 52, No. 7, 2007, pp. 30-33.
Sizova E., Gerya T., Brown M., Perchuk L.L. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, Vol. 116, No. 3-4, 2010, pp. 209-229.
Sleep N.H. Martian plate tectonics. Journ. of Geophys. Research, Vol. 99, No. E3, 1994, pp. 5639-5655.
Sleep N.H. The Hadean-Archaean Environment. Cold Spring Harb. Perspect. in Biol., Vol. 2, No. 6, 2010, pp. 1-14.
Sleep N.H., Zahnle K., Neuhoff P.S. Initiation of clement surface conditions on the earliest Earth. Proc. Nat. Acad. Sci. USA, Vol. 98, No. 7, 2001, pp. 3666-3672.
Solomatov V.S. Initiation of subduction by small-scale convection. Journ. of Geophys. Research, Vol. 109, B01412, 2004, pp. 1-16.
Solomon S.C., Sleep N.H., Richardson R.M. On the forces driving plate tectonics: Inferences from absolute plate velocities and intraplate stress. Geoph. Journ. R. astr. Soc., Vol. 42, 1975, pp. 769-801.
Spooner E.T.C., Beckinsa R.D., Fyfe W.S., Smewing J.D. O18 Enriched ophiolitic metabasic rocks from E Liguria (Italy), Pindos (Greece), and Troodos (Cyprus). Contrib. to Mineralogy and Petrology, Vol. 47, No. 1, 1974, pp. 41-62.
Stacey F.D., Davis P.M. Physics of the Earth. Cambridge Univ. Press. Cambridge, UK, 2008, 513 p.
Stern R.J. Evidence from ophiolites, blueschists and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, Vol. 33, No. 7, 2005, pp. 557-560.
Stern R.J. When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Science Bull., Vol. 52, No. 5, 2007, pp. 578-591.
Stern R.J. Modern-style plate tectonics began in Neoproterozoic time: An alternative interpretation of Earth’s tectonic history. GSA Special Papers, Vol. 440, 2008, pp. 265-280.
Stern R. J., Scholl D.W. Yin and yang of continental crust creation and destruction by plate tectonic processes. International Geology Review, Vol. 52, No. 1, 2010, pp. 1-31.
Stevenson D.J. Weakening under stress. Nature, Vol. 372, 1994, pp. 129-130.
Stewart J.A. Drifting continents and colliding paradigms: perspectives on the geoscience revolution. Indiana Univ. Press, USA, 1990, 304 p.
Sykes L.R. The seismicity and deep structure of island arcs. Journ. of Geophys. Research, Vol. 71, No. 12, 1966, pp. 2981-3006.
Tatsumi Y., Sato T., Kodaira Sh. Evolution of the Earth as an andesite planet: water, plate tectonics and delamination of anti-continent. Earth, Planets and Space, Vol. 67, No. 91, 2015, pp. 1-10.
Taylor F.B. Bearing of the Tertiary mountain belt on the origin of the Earth’s plan. Bulletin of the Geological Society of America, Vol. 21, 1910, pp. 179-226.
Taylor F.B. Correlation of Tertiary mountain ranges in the different continents. The Geol. Soc. of America Bull., Vol. 41, 1930, pp. 431-473.
Taylor S.R., McLennan S.M. Planetary crusts: their composition, origin and evolution. Cambridge Univ. Press. Cambridge, UK, 2009, 378 p.
Thomas H.S. The necessity for geological laws. Proceedings of the Oklahoma, Academy of Science for 1931, Vol. 12, 1932, pp. 66-71.
Turcotte D.L., Morein G., Roberts D., Malamud B.D. Catastrophic resurfacing and episodic subduction on Venus. Icarus, Vol. 139, 1999, pp. 49-54.
Turcotte D.L., Schubert G. Geodynamics. John Wiley and sons. N.Y., USA, 1982, 450 p.
Turcotte D.L., Schubert G. Geodynamics. Cambridge Univ. Press. Cambridge, NY, USA, 2002, 456 p.
Turner S., Rushmer T., Reagan M., Moyen J.-F. Heading down early on? Start of subduction on Earth. Geology, Vol. 42, No. 2, 2014, pp. 139-142.
van Andel T.H. Plate tectonics. Geology. Encyclopædia Britannica, Inc. 2015.
Valley J.W., Cavosie A.J., Fu B., Peck W.H., Wilde S.A. Comment on “Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga”. Science, Vol. 312, No. 5777, 2006, pp. 1139.
Valley J.W., Peck W.H., King E.M., Wilde S.A. A cool early Earth. Geology, 30, No. 4, 2002, pp. 351-354.
Verhoogen J., Turner F.J., Weiss L.E., Wahrhafting C., Fyfe W.S. The Earth. An introduction to physical geology. Holt-Rinehart, NY, USA, 1970,748 pp.
Von Humbolft A. Letter to Karl Ludwig Willdenow. Berlin, 1801.
Wessel P., Müller R.D. Plate tectonics, crust and lithosphere dynamics. In: (Watts A.B., Ed.) Treatise on Geophysics, Vol. 6, Elsevier B.V., 2009, pp. 49-98.
White D.A., Roeder D.H., Nelson Th.H., Crowell J.C. Sub-duction. Geol. Society of America Bulletin, Vol. 81, 1970, pp. 3431-3432.
Whitmeyer S.J., Fichter L.S., Pyle E.J. New directions in Wilson Cycle concepts: supercontinent and tectonic rock cycles. Geosphere, Vol. 3, No. 6, 2007, pp.511-526.
Wilde S.A., Valley J.W., Peck W.H., Graham C.M. Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, Vol. 409, 2001, pp.175-178.
Wilson J.T. A new class of faults and their bearing on continental drift. Nature, Vol. 207, 1965, pp. 343-347.
Wilson J.T. Did the Atlantic close and then re-open? Nature, Vol. 211, No. 5050, 1966, pp. 676-681.
Wilson J.T. On the building and classification of mountains. Journ. of Geophysical Research, Vol. 95, B5, 1990, pp. 6611-6628.
Wilson M. Plate-moving mechanisms: constraints and controversies. Journ. of the Geological Society, London, Vol. 150, 1993, pp. 923-926.
Witze A. The start of the world as we know it. Nature, Vol. 442, 2006, pp. 128-131.
Zhao D., Matsuzawa T., Hasegawa A. Morphology of the subducting slab boundary in the northeastern Japan arc. Physics of the Earth and Plan. Interiors, Vol. 102, 1997, pp. 89-104.
Zhao G., Cawood P.A., Wilde S.A., Sun M. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, Vol. 59, No. 1-4, 2002, pp. 125-162.
Zhao G., Sun M., Wilde S.A., Li S.Z. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, Vol. 67, No. 1-2, 2004, pp. 91-123.
Ziegler P.A. Plate tectonics, plate moving mechanisms and rifting. Tectonophysics, 215, No. 1-2, 1992, pp. 9-34.
Ziegler P.A. Plate-moving mechanisms: their relative importance. William Smith Lecture 1992. Journ. of the Geological Society, London, Vol. 150, 1993, pp. 927-940.
Ampferer O. Über das Bewegungsbild, von Faltengebirgen. Jahrbuch der kaiserlich-koniglichen geologischen Reichsanstalt, Vol. 56, 1906, pp. 539-622.
Ampferer O., Hammer W. Geologischer Querschnitt durch die Ostalpen vom Allga’u zum Gardasee. Jahrb. Geol. Reichsanstalt, Vol. 61, Pts. 3-4, 1911, pp. 531-710
Holmes A. Radioaktivität und Geologie. Verh. Nat. Ges. Basel, Vol. 41, 1930, pp. 136-185.
Kober L. Der Bau der Erde. Gebrȕder Borntraeger. Berlin, 1921, 324 p.
Schmeling H. Geodynamik. University of Frankfurt, 2004.
Schwinner R. Analogien im Bau der Ostalpen. Zentralblatt. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. Stuttgart, 1915, pp. 52-62.
Schwinner R. Vulkanismus und Gebirgsbildung. Ein Versuch. Zeitschrift für Vulkanologie, No. 5, 1919, pp. 175-230.
Stille H. Grundfragen der vergleichende Tektonik. Gebrȕder Borntraeger. Berlin, 1924, 468 p.
Stille H. Einfȕhrung in den Bau Amerikas. Gebrȕder Borntraeger. Berlin, 1940, 717 p.
Stille H. Geotektonische Gliederung der Erdgeschichte. Akade-mie der Wissenschaften, in Kommission bei W. de Gruyter. Deutsche Akademie der Wissenschaften zu Berlin. Mathematisch-Naturwissenschaftliche Klasse. Abhandlungen, Jahrg. No. 3, 1944, 80 p.
Wegener A.L. Die Entstehung der Kontinente. Geol. Rundschau, Vol. 3, No. 4, 1912, pp. 276-292.
Wegener A. Die Entstehung der Kontinente und Ozeane (4 ed.). Friedrich Vieweg & Sohn Akt. Ges., Braunschweig, 1929, 252 p.
Amstutz A. Sur 1’evolution des structures alpines. Archives Sci., Vol. 4, No. 5, 1951, pp. 323-329.
Bénard H. Les tourbillons cellulaires dans une nappe liquid. Revue Générale des Sciences pures et appliquées, Vol. 11, 1900, pp. 1261-1271 and 1309-1328.
Bénard H. Les tourbillons cellulaires dans une nappe liquid. Revue Générale des Sciences pures et appliquées, Vol. 11, 1900, pp. 1261-1271 and 1309-1328.
Bénard H. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chem. Phys., Series 7, Vol. 23, 1901, pp. 62-144.
Snider-Pellegrini A. La Création et ses mystères dévoilés. Paris, 1859.
Абрамович А.А. (под ред.). Методы теоретической геологии. Недра. Ленинград, 1978, 335 с.
Алейников A.Л., Беликов В.T., Эппельбаум Л.В. Некоторые физические основы геодинамики. Издательство Кедем. Тель-Авив, Израиль, 2001, 172 с.
Белоусов В.В. Основы геотектоники. Недра. Москва, 1975, 264 с.
Ивин А.А. Искусство правильно мыслить. Просвещение. Москва, 1986, 224 c.
Наймарк А.А. Полвека дискуссии фиксистов и неомобилистов: анализ реальности или гипотез, поиски истины или «удобной» теории? Вестник КРАУНЦ. Том 2, No. 8, 2006, c. 177-187.
Фролов В.Т. О научной геологии (статья 3). Вестник Московского государственного университета, Серия 4: Геология, No.1, 2002, c. 6-14.
Хаин В.Е. Общая геотектоника. Недра. Москва, 1973, 512 c.
Хаин В.Е. Тектоника континентов и океанов. Научный Мир. Москва, 2001, 606 c.
Хаин В.Е., Короновский Н.В. Планета Земля от ядра до ионосферы. КДУ. Москва, 2007, 244 c.
Хаин В.Е., Шейнман Ю.М. Сто лет учения о геосинклиналях. Советская Геология, No.11, 1960, c. 3-44.
Эппельбаум Л.В. Многомодельный подход к исследованию геофизических объектов. Депонировано в ВИНИТИ, Академия наук СССР, No. 7842-87, 1987, c. 1-10.
DOI:
10.33677/ggianas20200200043