Международный научный журнал

ISSN: 2663-0419 (электронная версия)

ISSN: 2218-8754 (версия для печати)

Международный научный журнал

ISSN: 2663-0419 (электронная версия)

ISSN: 2218-8754 (версия для печати)

contentImg
SCImago Journal & Country Rank

Метод СДВР: улучшенная система обработки и интерпретации (опробование на рудных месторождениях Кавказа)

Эппельбаум Л.В.

1 — Кафедра наук о Земле, Факультет точных наук, Тель-Авивский университет Рамат-Авив 6997801, Тель-Авив, Израиль

2 — Азербайджанский Государственный Университет Нефти и Промышленности, AZ1010, Баку, Азербайджан, просп. Азадлыг, 20

Резюме

A-
A+
Исследование электромагнитных (ЭМ) полей удаленных военных передатчиков сверхнизкочастотного (СНЧ) диапазона является одним из самых мобильных и недорогих геофизических методов. В настоящее время этот метод находит применение при поисках различных месторождений, разведке приповерхностных подземных вод, археологических исследованиях и геологическом картировании. Для геофизических исследований может быть использовано несколько десятков СНЧ-передатчиков, находящихся в разных регионах мира. Различные частоты и углы прихода регистрируемого ЭМ-излучения позволяют получить дополнительные преимущества при интерпретации. При исследовании методом СДВР (в западных публикациях используется аббревиатура VLF) используются как электрическая, так и магнитная составляющие ЭМ поля. Обычно предпочтение отдается магнитной компоненте ЭМ поля (H). Широкое использование метода СДВР ограничивалось отсутствием надежных методов устранения временных вариаций ЭМ поля, влияния сильнопересеченного рельефа и процедур количественной интерпретации СДВР-аномалий. Эти проблемы были успешно решены и объединены в единую методическую систему. Для исключения влияния вариаций во времени была разработана специальная фильтрационная процедура. Корреляционный метод позволяет кардинально снизить влияние пересеченного рельефа местности. Для количественной интерпретации аномалий СДВР доказана возможность использования современных методов, разработанных в магниторазведке для сложных геолого-геофизических условий. Наконец, для выявления скрытых объектов на фоне интенсивных геологических помех было предложено использование оригинальных статистических, информационных и вейвлет-алгоритмов. Главные компоненты разработанной интерпретационной системы были успешно применены на полиметаллических и медных месторождениях Кавказа.

Ключевые слова: СДВ-передатчики, устранение временных вариаций, устранение влияния пересеченного рельефа, улучшенная количественная интерпретация, рудные месторождения, геолого-геофизическое картирование, предвестники землетрясений

 

ЛИТЕРАТУРА

Abtahi S., Pedersen L., Kamm J., Kalscheuer T. Extracting geoelectrical maps from vintage very- low-frequency airborne data, tipper inversion, and interpretation: a case study from northern Sweden. Geophysics, Vol. 81, No. 5, 2016, pp. B135-B147.

Alperovich L., Eppelbaum L., Zheludev V., Dumoulin J., Soldovieri F., Proto M., Bavusi M., Loperte A. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineer-ing, Vol. 10, No. 2, 025017, 2013, pp. 1-17.

Al-Tarazi E., Abu-Rajab J.A., Al-Naqa A., El-Waheidi M. Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method. Jour. of Applied Geophysics, Vol. 65, 2008, pp. 121-131.

Baker H.A., Myers S.O. A topographic correction for VLF-EM profiles based on model studies. Geoexploration, Vol. 18, 1980, pp. 135-144.

Barr R., Llanwyn Jones D., Rodger C.J. ELF and VLF radio waves. Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 62, 2000, pp. 1689-1718.

Basokur A.T., Candansayar M.E. Enhancing VLF data for qualitative interpretation: An example of massive chalcopyrite exploration. The Leading Edge, Vol. 22, No. 6, 2003, pp. 568-570.

Bayrak M. Exploration of chrome ore in Southwestern Turkey by VLF-EM. Journal of the Balkan Geophysical Society, Vol. 5, No. 2, 2002, pp. 35-46.

Beamish D. Quantitative 2D VLF data interpretation. Journal of Applied Geophysics, Vol. 45, No. 1, 2000, pp. 33-47.

Bosch F.P. and Müller I. Improved karst exploration by VLF-EM-gradient survey: comparison with other geophysical methods. Near Surface Geophysics, Vol. 3, No. 4, 2005, pp. 299-310.

Bozzo E., Lombardo S., Merlanti F. VLF prospecting: observations about field experiments. Annali di Geofisica, Vol. 37, No. 5, 1994, pp. 1215-1227.

Darnet M., Sailhac P., Marquis G. Geophysical investigation of antique iron furnaces: insights from modelling magnetic and VLF data. Near Surface Geophysics, Vol. 2, 2004, pp. 93-99.

Djeddi M., Baker H.A., Tabbagh A. Interpretation of VLF-EM anomalies of 3D structures by using linear filtering techniques. Annali Di Geofisica, Vol. 41, No. 2, 1998, pp. 151-163.

Drahor M.G. Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. Jour. of Applied Geophysics, Vol. 59, No. 3, 2006, pp. 205-223.

Drahor M.G., Berge M.A. Geophysical investigations of the Se-ferihisar geothermal area, Western Anatolia, Turkey. Geothermics, Vol. 35, No. 3, 2006, pp. 302-320.

Eberle D. A method of reducing terrain relief effects from VLF-EM data, Geoexploration, Vol. 19, No. 2, 1981, pp. 103-114.

Eppelbaum L.V. Examples of terrain corrections in the VLF-method in the Caucasian region, USSR. Geoexploration, Vol. 28, 1991, pp. 67-75.

Eppelbaum L.V. Localization of ring structures in Earth’s environments. Jour. of the Archaeological Soc. of the Slovakian Acad. of Sci., Spec. Issue: ‘Archaeological. Prospecting’, Vol. XLI, 2007a, pp. 145-148.

Eppelbaum L.V. Revealing of subterranean karst using modern analysis of potential and quasi-potential fields. Proceed. of the 2007 SAGEEP Conference, Vol. 20, Denver, USA, 2007, pp. 797-810.

Eppelbaum L.V. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, Vol. 36, No. 16, 2011, pp. 1318-1330.

Eppelbaum L.V. Four color theorem and applied geophysics. Applied Mathematics, Vol. 5, No. 4, 2014a, pp. 358-366.

Eppelbaum L.V. Estimating informational content in geophysical observations on example of searching economic minerals in Azerbaijan. ANAS Proceedings. The sciences of Earth, Nos. 3-4, 2014b, pp. 31-40.

Eppelbaum L.V. Quantitative interpretation of magnetic anomalies from bodies approximated by thick bed models in complex environments. Environmental Earth Sciences, Vol. 74, No. 7, 2015, pp. 5971-5988.

Eppelbaum L.V. Remote Operated Vehicles geophysical surveys in air, land (underground) and submarine archaeology: General peculiarities of processing and interpretation. Trans. of the 12th EGU Meet., Geophysical Research Abstracts, Vol. 18, EGU2016-10055, Vienna, Austria, 2016, pp. 1-7.

Eppelbaum L.V. Geophysical potential fields: geological and environmental applications. Elsevier, Amsterdam – N.Y., 2019, 465 p.

Eppelbaum L. Theories of probability, information and graphs in applied geophysics. In: (K. Kyamakya, Ed.) Prime archives in applied mathematics, Vide Leaf. 2020, pp. 1-35.

Eppelbaum L.V., Alperovich L., Zheludev V., Pechersky A. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, Vol. 24, 2011, pp. 24-60.

Eppelbaum L.V. and Finkelstein M.I. Radon emanation, magnetic and VLF temporary variations: removing components not associated with dynamic processes. Collection of Selected Papers of the XXVI General Assembly of the European Seismological Commission (Tel Aviv, Israel), 1998, pp. 122-126.

Eppelbaum L.V., Khesin B.E. VLF-method: elimination of noises and quantitative interpretation. Collection of papers. Regional Symposium on Electromagnetic Compatibility Section “LF to ULF” Electromagnetics and the Earth, 5.2.1, IEEE Publ., Tel Aviv, 1992, pp. 1-6.

Eppelbaum L.V., Khesin B.E. Geophysical studies in the Caucasus. Springer. Dordrecht-N.Y., 2012, 411 p.

Eppelbaum L.V., Khesin B.E., Itkis S.E. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, Vol. 8, No. 3, 2001, pp. 163-185.

Eppelbaum L.V., Livshits Ya., Flexer A., Ben-Avraham Z. Integrated geological-geophysical analysis of Ring Structures phenomenon in the Eastern Mediterranean. Trans. of the Conf. of Israel Geological Soc., Annual Meet., Mizpe-Ramon, Israel, 1998, p.25.

Eppelbaum L.V., Mishne A.R. Unmanned airborne magnetic and VLF investigations: effective geophysical methodology of the near future. Positioning, Vol. 2, No. 3, 2011, pp. 112- 133.

Eppelbaum L.V., Zheludev V., Averbuch A. Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. ANAS Proceedings. The sciences of Earth, Nos. 1-2, 2014, pp. 36-46.

Fischer G., Le Quang B.V., Muller L. VLF ground surveys, a powerful tool for the study of shallow two-dimensional structures. Geophysical Prospecting, Vol. 31, 1983, pp. 977-991.

Fraser D.C. Contouring of VLF-EM data. Geophysics, Vol. 34, No. 6, 1969, pp. 958-967.

Gokhberg M.B., Gufeld I.L., Rozhnoy A.A., Marenko V F., Yampolsky V.S., Ponomarev E.A. Study of seismic influence on the ionosphere by super long wave probing of the Earth-ionosphere waveguide. Physics of Earth and Planet. Inter., Vol. 57, 1989, pp. 64-67.

Guerin R., Benderitter Y. Shallow karst exploration using MT-VLF and DC resistivity methods. Geophysical Prospecting, Vol. 43, No. 5, 1995, pp. 635-653.

Gürer A., Bayrak M., Gürer O.F. A VLF survey using current gathering phenomena for tracing buried faults of Fethiye–Burdur Fault Zone, Turkey. Journal of Applied Geophysics, Vol. 68, No. 3, 2009, pp. 437-447.

Hamdan H., Kritikakis G., Andronikidis N., Economou N., Manoutsoglou M., Vafidis A. Integrated geophysical methods for imaging saline karst aquifers. A case study of Stylos, Chania, Greece. Jour. of the Balkan Geophysical Soc., Vol. 13, No. 1, 2010, pp. 1-8.

Harrison R.G., Aplin K.L., Rycroft M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere. Jour. Atmos. Sol. Terrest. Phys., Vol. 72, No. 5-6, 2010, pp. 376-381.

Hayakawa M., Kasahara Y., Nakamura T., Muto F., Horie T., Maekawa S., Hobara Y., Rozhnoi A.A., Solovieva M., Molchanov O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. Jour. Of Geophys. Research, Vol. 115, A9, 2010, pp. 1-9.

Ishimaru A. Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. 2nd Ed. Wiley. USA, 2017, 940 p.

Jeng Y., Lin M.J., Chen C.S., Wang Y.H. Noise reduction and data recovery for a VLF-EM survey using a nonlinear decomposition method. Geophysics, Vol. 72, No. 5, 2007, pp. F223-F235.

Kachakhidze N., Kachakhidze M., Kereselidze Z., Ramishvili G. Specific variations of the atmospheric electric field potential gradient as a possible precursor of Caucasus earthquakes. Nat. Hazards Earth Syst. Sci., Vol. 9, 2009, pp. 1221-1226.

Kaikkonen P., Sharma S.P. A comparison of performances of linearized and global nonlinear 2-D inversion of VLF and VLF-R electromagnetic data. Geophysics, Vol. 66, No. 2, 2001, pp. 462-475.

Karous M. Effect of relief in EM-data methods with very distant source. Geoexploration, Vol. 17, 1979, pp. 33-42.

Karous M., Hjelt S.E. Determination of apparent current density from VLF measurements. Dept. of Geophys., University of Gulu, No. 89, 1979, 1-9 p.

Karous M., Hjelt S.E. Linear filtering of VLF dip-angle measurements. Geophysical Prospecting, Vol. 31, No. 5, 1983, pp. 782-794.

Kaufman A.A., Keller G.V. The magnetotelluric method. Else-vier. Amsterdam, 1981, 596 p.

Khalil M.A., Abbas A.M., Santos F.A.M., Mesbah H.S.A., Mas-soud U. VLF-EM study for archaeological investigation of the labyrinth mortuary temple complex at Hawara area, Egypt. Near Surface Geophysics, Vol. 8, 2010, pp. 203-212.

Khesin B.E., Alexeyev V.V., Eppelbaum L.V. Interpretation of geophysical fields in complicated environments. Kluwer Academic Publisher (Springer). Ser.: Advanced Approaches in Geophysics, Dordrecht — London – Boston, 1996, 368 p.

Kushida Y., Kushida R. Possibility of earthquake forecast by radio observations in the VHF band. Jour. of Atmos. Elect., Vol. 22, 2002, pp. 239-255.

Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. Pergamon Press. Oxford, 1984, 460 p.
Liu H., Liu J., Yu C., Ye J., Zeng Q. Integrated geological and geophysical exploration for concealed ores beneath cover in the Chaihulanzi goldfield, northern China. Geophysical Prospecting, Vol. 54, No. 5, 2006, pp. 605-621.

McNeill J.D., Labson V.F. Geological mapping using VLF radio fields. In: (Nabighian, M.C., Ed.) Geotechnical and Environmental Geophysics, Review and Tutorial. Vol. 1. Society of Exploration, Tulsa, 1991, pp. 191-218.

Michael A.J. Testing prediction methods: Earthquake clustering versus the Poisson model. Geophysical Research Lett., Vol. 24, No. 15, 1997, pp. 1891-1894.

Mohanty W.K., Mandal A., Sharma S.P., Gupta S., Misra S. Integrated geological and geophysical studies for delineation of chromite deposits: a case study from Tangarparha, Orissa, India Chromite exploration at Tangarparha. Geophysics, Vol. 76, No. 5, 2011, pp. B173-B185.

Moriya T., Mogi T., Takada M. Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes. Geophysical Jour. Intern., Vol. 180, 2010, pp. 858-870.

Ogilvy R.D., Cuadra A., Jackson P.D., Monte J.L. Detection of an air-filled drainage gallery by the VLF resistivity method. Geophysical Prospecting, Vol. 39, No. 6, 1991, pp. 845-859.

Olsson O. VLF-Anomalies from a perfectly conducting half-plane below an overburden. Geophysical Prospecting, 28, No. 3, 1980, pp. 415-434.

Olsson O. Computation of VLF response over half-plane and wedge models. Geophysical Prospecting, Vol. 31, No. 1, 1983, pp. 171-191.

Oskooi B., Pedersen L.B. Resolution of airborne VLF data. Jour. of Applied Geophysics, Vol.58, No. 2, 2006, pp. 158-175.

Pazzi V., Tapete D., Cappuccini L., Fanti R. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment. Geomorphology, Vol. 273, 2016, pp. 335-347.

Pedersen L.B., Oskooi B. Airborne VLF measurements and variations of ground conductivity. Surveys in Geophysics, Vol. 25, 2004, pp. 151-181.

Pierce E.T. Atmospheric electricity and earthquake prediction. Geophysical Research Lett., Vol.3, No. 3, 1976, pp. 185-188.

Pinel N., Boulier C. Electromagnetic wave scattering from ran-dom rough surfaces: asymptotic models. Wiley. USA, 2013, 265 p.

Poddar M. Very low-frequency electromagnetic response of a perfectly conducting half-plane in a layered half-space. Geophysics, Vol. 47, 1982, pp. 1059-1067.

Poikonen A., Suppala I. On modeling airborne very low-frequency measurements. Geophysics, Vol. 54, No. 12, 1989, pp. 1596-1606.

Pulinets S. and Boyarchuk K. Ionospheric precursors of earthquakes. Springer. Berlin – Heidelberg, 2004, 315 p.

Rajab J.A. Mapping the near-surface geoelectrical structure of the Mottled Zone using the very low frequency–electromagnetic method. Jour. of Applied Geophysics, Vol. 184 (104240), 2021, pp. 1-12.

Rozhnoi A., Solovieva M., Hayakawa M. VLF/LF signals method for searching of electromagnetic earthquake precursors. In: (M. Hayakawa, Ed.) Earthquake Prediction Studies: Seismo Electromagnetics, TERRAPUB. Tokyo, 2013, pp. 31-48.

Sandrin A., Elming S.A. Geophysical and petrophysical study of an iron oxide copper gold deposit in northern Sweden. Ore Geology Reviews, Vol. 29, No. 1, 2006, pp. 1-18.

Santos F.A.M., Mateus A., Figueiras J., Goncalves M.A. Mapping groundwater contamination around a landfill facility using the VLF-EM method – A case study. Journal of Applied Geophysics, Vol. 60, No. 2, 2006, pp. 115-125.

Sharma S.P., Kaikkonen P. Two-dimensional non-linear inversion of VLF-R data using simulated annealing. Geophysical Journal Inter., Vol. 133, No. 3, 1998, pp. 649-668.

Sharma S.P., Biswas A., Baranwal V.C. Very low-frequency electromagnetic method: a shallow subsurface investigation technique for geophysical applications. In: (Sengupta D., Ed.) Recent trends in modelling of environmental contaminants», Springer. 2014, 119-141.

Shendi E.-A., Aziz A., Mamoun K., Gamal M. The effectiveness of the very low frequency electromagnetic method (VLF‑EM) in the exploration of sulphide mineralization in arid environments, case study from South Sinai Peninsu-la, Egypt. Environmental Earth Sciences, Vol. 76, No. 22, 2017, pp. 1-11.

Singh A., Maurya S.K., Sharma, S.P. Forward modeling and inversion of very low frequency electromagnetic data over rugged topography using 2d triangular elements. In: (Biswas, A. and Sharma, S.P., Eds.) Advances in modeling and interpretation in near surface geophysics, 2020, pp. 97-120.

Singh A., Sharma S.P. Interpretation of very low frequency electromagnetic measurements in terms of normalized current density over variable topography. Jour. of Applied Ge-ophysics, Vol. 133, 2016, pp. 82-91.

Sinha A.K. Recent developments in quantitative interpretation of VLF-EM data. In: (Eds. Roy K.K. et al.) Deep electro-magnetic exploration, Narosa Publ. House. New Delhi, In-dia, 1998, pp. 599-606.

Simon F.-X., Tabbagh A., Donati J.S., Sarris A. Permittivity mapping in the VLF–LF range using a multi-frequency EMI device: first tests in archaeological prospection. Near Surface Geophysics, Vol. 17, No. 1, 2019, pp. 27-41.

Smirnov S. Negative anomalies of the Earth’s electric field as earthquake precursors. Geosciences, Vol. 10, No. 10, 2019, pp. 1-7.

Tawfik M., Farag K.S., Ibraheem M. The efficiency of (VLF-EM) method in detecting buried old tunnels in the Egyptian Nile Delta. Trans. Of the 73rd EAGE Conf. & Exhib., Vien-na, Austria, SP04, 2011, pp. 1-3.

Tesmull F.A., Crossley D.I. Inversion of VLF-data for simple lateral inhomogeneties. Geological Survey of Canada, No. 81-15, 1981, pp. 79-86.

Timur E. Magnetic susceptibility and VLF-R investigations for determining geothermal blowout contaminated area: a case study from Alaşehir (Manisa/Turkey). Environmental Earth Sciences, Vol. 72, 2014, pp. 2497-2510.

Xu L.-B. Application of the very low frequency (VLF) electro-magnetic method in the Zhuyuan copper deposit, Henan Province. Chinese Geology, Vol. 28, No. 11, 2001, pp. 25-28 (in Chinese with English abstract).

Villee M.A., Chouteau M., Palacky G.J. Effect of temporal and spatial variations of the primary signal on VLF total-field surveys. Geophysics, Vol. 57, No.1, 1992, pp. 97-105.

Wait J.R. Introduction to the theory of VLF propagation. Proceedings of the Inst. Of Radio Engineers (IEEE), Vol. 50, 1962, pp. 1624-1647.

Zhdanov M.S. Integral transforms in geophysics. Springer. Berlin – Heidelberg, 1988.

Zhdanov M.S., Keller G.V. The geoelectrical methods in geo-physical exploration, Elsevier. Amsterdam, 1994, 873 p.

Zlotnicki J., Vargemezis G., Mille A., Bruère F., Hammouya G. State of the hydrothermal activity of Soufriere of Guadeloupe volcano inferred by VLF surveys. Jour. Of Applied Geophysics, 2006, Vol. 58, No. 4, pp. 265-279.

Hänl H., Maue A.W., Westpfahl K. Theorie der beugung. Springer-Verlag. Berlin, 1961, 218 p.

Miecznik S. Ciala Cylindryezne w Polo Plaskey Fali Electromag-netycznei. Techn. Poszuk. Geol., 25, No. 3, 1986, 16-22.

Альпин Л.М., Даев Д.С., Каринский А.Д. Теория полей, применяемых в разведочной геофизике. Недра. Москва, 1985, 407 с.

Гинзбург С.Н. Метод СДВР для поисков и разведки колчеданно-полиметаллических месторождений. Разведка и охрана недр, No. 9, 1982, с. 39-44.

Гинзбург С. и др. Подземные геофизические исследования на рудных месторождениях Белокан-Закатальского рудного поля. Отчет ЦНИГРИ (Центральный Научно-Исслед. Ин-т Цветных и Благородных Металлов). Фонды ЦНИГРИ. Москва, 1981, 238 с.

Гордеев С.Г. К вопросу о влиянии рельефа местности в методе радиокип при измерении поля СДВ. Труды ЦНИГРИ, вып. 89, 1970, c. 188-195.

Гордеев С.Г. Способ учета влияния рельефа на магнитное поле удаленной радиостанции. Труды ЦНИГРИ, вып. 179, 1983, с 56-60.

Гордеев С.Г., Седельников Е.С. К вопросу интерпретации результатов метода СДВР на основе моделирования проводящих пластов. Труды ЦНИГРИ, вып. 116, 1974, с. 88-99.

Гордеев С.Г., Седельников Е.С., Тархов А.Г. Электроразведка методом радиокип. Недра. Москва, 1981, 132 с.

Дмитриев В.И. (ред.). Вычислительная математика и техника в разведочной геофизике. Справочник геофизика. Недра. Москва, 1982, 222 с.

Дмитриев В.И., Барышникова И.А., Захаров Е.В. Аномальные электромагнитные поля пластовых тел. Недра. Ленинград, 1977, 168 p.

Жданов М.С. Аналоги интеграла типа Коши в теории геофизических полей. Наука. Москва, 1984, 328 с.

Заборовский А.И. Электроразведка. Гостоптехиздат. Москва, 1963, 423 с.

Захаров Е.В., Пименов Ю.В. Численный анализ дифракции радиоволн. Радио и Связь. Москва, 1982, 184 с.

Инструкция по электроразведке. Министерство Геологии СССР. Недра. Москва, 1984, 134 c.

Седельников Е.С. Влияние рельефа на поле удаленного источника переменного электромагнитного поля. Известия АН СССР, Сер: Физика твердой земли, No. 7, 1983, с. 102-106.

Тархов A.Г. Основы геофизической разведки методом радиокип. Госгеолтехиздат, Ленинград. 1961, 216 с.

Хаин В.E. Основные проблемы современной геологии. Недра. Москва, 1995, 348 c.

Эппельбаум Л.В., Мишне Л.Р. Некоторые теоретические аспекты оптимальной фильтрации геофизических сигналов с зависимыми помехами. Депонировано в ВИНИТИ, Акад. Наук СССР, № 6034-B88, 1988, 10 с.

DOI: 10.33677/ggianas20210200060