© Г.В.Мустафаев, 2008

ОБ ИСТОЧНИКАХ МЕТАЛЛОВ В МЕСТОРОЖДЕНИЯХ ЮЖНОГО СКЛОНА БОЛЬШОГО КАВКАЗА И РУДООБРАЗУЮЩЕЙ СИСТЕМЕ «МАНТИЯ – РУДА»

Г.В.Мустафаев

Институт геологии НАН Азербайджана AZ1143, Баку, просп. Г.Джавида, 29A

В статье приводится анализ данных о рудообразующих элементах в осадочных и магматических комплексах Южного склона Большого Кавказа. Подтверждается высокая роль магматизма в формировании месторождений колчеданного семейства. Одновременно обосновывается, что в образовании месторождений упор на их связь только с магматизмом ограничивает возможности поисков, оставляет в тени другие источники образования месторождений, в частности, непосредственно из мантии по системе «мантия — руда» без проявлений магматизма.

Введение. Открытие азербайджанскими геологами в конце 50-х годов и в 60-е годы XX века серии крупных и средних по запасам колчеданно-полиметаллических и медно-пирротиновых месторождений на Южном склоне Большого Кавказа превратило регион в одну из крупных рудных провинций Кавказа в целом и Азербайджана в частности. Это открытие спровоцировало резкое увеличение количества научно-исследовательских работ, посвященных изучению геологического строения месторождений, их вещественного состава, генезиса и других вопросов, а также поисково-разведочных работ на предмет обнаружения новых рудных залежей. Естественно, всегда возникал вопрос - а каковы дальнейшие перспективы выявления новых залежей, или регион уже исчерпал свои возможности выявленными месторождениями? Из исследований по прогнозной оценке металлогенических зон Большого и Малого Кавказа следовало, что теоретически ресурсы меди, свинца и цинка в них известными месторождениями не исчерпываются (Булкин, Мустафаев, 1984), особенно в металлогенической зоне Южного склона Большого Кавказа, где эти ресурсы могут быть значительно увеличены как за счет доразведки известных месторождений и рудопроявлений, так и открытия новых рудных залежей. В этом аспекте установление источников рудного вещества является одним из поисковых признаков, способствующих научному обоснованию целенаправленных исследований.

Установление источника рудного вещества является одним из кардинальных вопросов теории рудообразования (Смирнов, 1976) и имеет важное практическое значение (Щеглов, 1987). Данному вопросу посвящена обширная литература. Большинство исследователей выделяют три группы источников рудообразующих веществ, формирующих эндогенные месторождения: 1) ювенильные, связанные с глубинными подкоровыми магмами базальтоидного состава; 2) ассимиляционные, определяющиеся менее глубинными палингенными магмами гранитоидного состава и 3) фильтрационные, обусловленные мобилизацией рудообразующих веществ в процессе циркуляции.

При изучении рудного вещества месторождений Южного склона Большого Кавказа упор делался главным образом на ювенильный источник - базальтовую магму с ее кислыми дифференциатами, обусловившими полигенность и полихронность месторождений. Значительно реже, особенно на начальном этапе исследований, появлялись также работы об осадочном генезисе месторождений. Но не были охвачены исследованиями другие возможные источники рудного вещества, в частности, не изучена возможность формирования рудных залежей без проявления магматизма, непосредственно из мантийных эманаций. С учетом геологического строения Южного склона Большого Кавказа, сложенного преобладающе терригенно-осадочными отложениями и значительно меньше магматическими образованиями, ниже мы рассмотрим возможные источники рудного вещества в следующей последовательности: 1) вмещающие осадочные породы, из которых в процессе фильтрационных процессов могли быть мобилизованы рудообразующие вещества с дальнейшей их концентрацией в благоприятных средах; 2) малоглубинные (коровые и/или подкоровые) магмы базальтоидного состава, дифференцированные от основных до кислых разностей в процессе длительной эволюции и возможной их контаминации; 3) глубокомантийные (нижнемантийные ?) источники, образующие систему «мантия – руда» без проявления магматизма в результате подъема мантийных эманаций в верхние слои коры, т.е.процесса дегазации мантии.

Геологическая позиция региона и рудных месторождений

Большой Кавказ считается олной из ветвей Мезотетиса и склалчатого сегмента Альпийско-Гималайского пояса, сформированного между Скифской и Аравийской плитами. Обширный палеобассейн Южного склона Большого Кавказа в геодинамической градации относится к окраинноморским структурам, по центральной части которых в ранней юре в результате спрединга закладываются глубинные разломы и образуется глубоководный трог рифтогенного типа с накоплением, по разным авторам, от 6 до 10-11 км глинистых сланцев, превращенных впоследствии в аспидные, алевролитов и меньше песчаников. В средней и поздней юре область, воздымаясь, преобразуется в энсиматическую островную дугу. И в ранней и средне-поздней юре имел место в ограниченном масштабе (относительно объема осадочного комплекса) магматизм вначале базальтовый сменившийся в дальнейшем на базальт-андезит-дацитовый и габбро-диорит-плагиогранитовый, образовавший известный в геологической литературе «дайковый пояс». Несмотря на несопоставимое с осадочным комплексом ограниченное развитие магматических тел, магматизм обусловил формирование серии крупных промышленных месторождений колчеданного семейства. Месторождения сгруппированы в две формации: колчеданно-полиметаллическую стратиформную, залегающую среди сланцев согласно их напластованию, и меднопирротиновую, ассоциирующуюся с дайкообразными телами магматических пород. И месторождения, и магматические тела сконцентрированы главным образом вдоль глубинных разломов и их оперяющих, в пределах наиболее приподнятого блока Южного склона Большого Кавказа, выделенного как Балакен-Загатальский рудный район. Восточнее по мере углубления трога и прогибания морского бассейна, соответственно понижения уровня последующих блоков, а также отсутствия видимых выходов магматических тел рудообразование резко идет на убыль, месторождения сменяются рудопроявлениями и минерализацией. Тесная пространственная связь промышленных месторождений с магматическими телами служила одним из критериев связи рудообразования с магматизмом.

Наличие промышленных месторождений колчеданно-полиметаллических и меднопирротиновых руд и многочисленных их проявлений обусловило проведение широких исследований осадочных и магматических пород, а также рудных месторождений региона, отраженных в монографиях, диссертациях и научно-исследовательских отчетах. Результаты этих исследований обобщены в монографиях: «Геология СССР, т.47, Азербайджанская ССР. Полезные ископаемые» (1976), «Колчеданные месторождения мира» (1979), «Геология Азербайджана, том VI, Полезные ископаемые» (2003), «Минерально-сырьевые ресурсы Азербайджана» (2005). В геохимическом отношении рудообразующие элементы наиболее полно изучены М.А.Кашкаем и др. Г.В.Мустафаевым (2002, Г.В.Мустафаевым и др. (1984), З.М. Али-заде, Г.Л. Мустафаевым (1987), Р.Б.Керимовым (1991), Н.А.Новрузовым (2005) и др.

Рудовмещающие осадочные породы как возможные источники рудного вещества. Размещение месторождений колчеданно-полиметаллической формации среди сланцев ставит вопрос о геохимической специализации рудовмещающих осадочных отложений, представляющей практический интерес в аспекте решения вопроса об источнике рудных элементов. В таблице 1 приводится содержание главных рудообразующих элемен-

тов (меди, цинка, свинца и частично кобальта) в осадочных образованиях (глинистых сланцах, алевролитах и песчаниках) по возрастной группе в неизмененных разностях пород, отражающих их фоновые значения. В подверженных различным процессам породах, особенно в ореоле вмещающих рудные тела породах, их содержания значительно повышены. Согласно приведенным данным, выявляется,

что 1) содержания главных рудообразующих элементов (Cu, Zn и Co) ниже кларка независимо от их возрастной принадлежности, только содержание свинца в среднеюрских осадочных породах равно или выше кларка; 2) в верхнеюрско-нижнемеловых и нижнемеловых осадочных отложениях содержания главных рудообразующих элементов значительно ниже, чем в среднеюрских.

Таблица 1
 Фоновые содержания Zn,Рb,Сu и Со в мезозойских отложениях Балакен-Загатальского рудного района Южного склона Большого Кавказа, в г/т (Кашкай и др., 1979)

Возраст/ элемент	Zn	Pb	Cu	Co
K_1	8(30)	9(30)	19(30)	4(30)
J_3+K_1	15(37)	3(37)	22(41)	5(37)
$J_{2 \text{ bt}}$	55(8)	22(8)	39(8)	10(8)
$ m J_{2di}$	58(94)	36(94)	32(98)	13(91)
J_{2a}	65(17)	28(19)	46(19)	27(16)
Кларки осадочных пород (Виноградов,1962)	80	20	57	20

Примечание: в скобках указано количество анализов.

Если сравнить содержания вышеприведенных элементов в различных литологических типах пород рудоносных и безрудных участков (табл.2), то выявляется большая разница, выраженная в высоком содержании указанных элементов на рудоносных участках, что объясняется как вторичными ореолами рудных тел, так и, возможно, скрытой минерализацией вмещающих рудные тела пород.

В табл.3 приводится материал по содержанию тех же элементов в зависимости от фациальных условий формирования осадочных пород в юрском палеобассейне Большого Кавказа. Так, З.М. Али-заде, Г.Л.Мустафаевым (1987) установлено, что содержания Си, Рb, Ni в глинистых сланцах палеобассейна от его прибрежной части к глубоководной повышается, а кобальта понижается, хотя в песчаниках такая четкая закономерность не устанавливается.

 Таблица 2

 Кларки концентраций элементов на рудоносных и нерудоносных участках южного склона

 Большого Кавказа (по Мустафаеву и др., 1984)

Участки	Тип пород	Cu	Zn	Pb	Co	V	Cr	Ni	Sn	В
Рудоносные участки										
Кацдагский	Сланцы(313)	14,5	13,8	34,7	1,3	1,9	0,9	0,3	1,4	0,18
Катехский	Сланцы(173)	3,1	5,3	15,4	1,0	2,2	0,8	0,3	0,8	0,5
Кацмалинский	Сланцы(111)	11,2	5,0	5,3	1,0	1,5	0,6	0,4	1,6	0,3
Тенрос-	Сланцы(196)	9,5	8,0	13,6	0,9	1,9	1,2	0,2	1,6	0,2
Чугакский										
«	Песчаники(17)	1,8	1,9	1,5	1,1	1,8	1,1	0,3	0,15	0,1
Безрудные участки										
Габалинский	Сланцы(49)	1,0	0,7	0,7	1,3	0,3	0,7	0,4	0,4	0,5
Дуруджинский	Сланцы(95)	0,7	0,7	0,7	0,5	0,9	0,6	0,3	0,3	0,5
Кларки по Вино	57	80	20	20	130	100	95	100	100	

Примечание: в скобках указано количество анализов.

Таблица 3 Содержания элементов (в г/т) в ааленских отложениях Восточного Кавказа (по Али-заде, Мустафаеву, 1987)

Состав пород	Зоны	Cu	Pb	Zn	Co	Ni	В	Ba
Глинистые	Прибрежная	34	17	148	20	20	32	636
сланцы	Мелководная	38	22	133	18	33	47	403
	Глубоководная	55	29	152	15	39	65	338
Песчаники	Прибрежная	29	17	92	23	20	25	305
	Мелководная	26	24	77	14	26	38	226
	Глубоководная	33	25	106	10	24	23	260
Кларки по Ви	ноградову (1962)	57	20	80	20	95	100	800

При этом содержание меди в глинистых сланцах достигает кларковых значений только в глубоководной части бассейна, содержание свинца незначительное, цинка - в два раза повышенное, а кобальта - пониженное. Эти закономерности устанавливаются также для Ni, B, Ba, однако их содержания значительно ниже кларка независимо от фациальных условий накопления. Эти данные не подтверждают выводов ряда сторонников осадочного генезиса колчеданно-полиметаллических месторождений Южного склона Большого Кавказа об окружающей суше, как источнике рудного вещества месторождений, с которой происходит снос рудных элементов в данный палеобассейн.

В процессе осадконакопления и дальнейшего диагенеза действительно элементы могут частично концентрироваться в локальных впадинах с застойной водой. В шельфовой зоне Черного моря, прилегающей к устьям рек Днепр, Днестр, Ингул, исследователями установлена пятикратная концентрация металлов с образованием аномалий содержания железа, золота, меди, кобальта и ряда других металлов, что связано с гранулометрическим составом выносимого реками материала. Аналогичные ореолы с повышенной концентрацией металлов выявлены и в Средиземном море, где она связана с осаждением мельчайших частиц обломочного материала и адсорбированных с ними коллоидных металлов. Известно, что глубоководные впадины Черного моря насыщены сероводородом. Черные пелитовые осадки, накапливающиеся в нем, содержат гидротроилит, который с ростом концентрации свободной серы переходит в мельниковит и пирит (Н.М.Страхов), что происходит и в сланцевой толще рудных районов Южного склона Большого Кавказа.

Исследователи отмечают, что распределение элементов по площади бассейна и в разрезе водной толщи современных морей и океанов неоднородно, что обусловлено глобальными и сезонными циркуляциями океанических и морских вод, но недостаточно интенсивными, чтобы создать распределение, близкое к однородному. Также они считают, что режим, благоприятный для седиментации, адсорбирования растворенных металлов коллоидным сульфидом железа, органическим дентритом и глинистыми частицами, создается при спокойном гидродинамическом режиме слабоподвижных вод в глубоководных впадинах. На Южном склоне Большого Кавказа месторождения Филизчайского типа формировались в локальных впадинах (Курбанов, 1982 и др.), но в результате осаждения рудного вещества из рудных рассолов, источником которых являлись неглубоко залегающие магматические очаги. В рудном районе глинистые сланцы четко выделяются высокими содержаниями элементов. Дайковые породы основного состава, которые часто находятся в зоне гидротермального воздействия, также характеризуются высокими концентрациями элементов. Это отмечено также в работах М.А.Кашкая и др. (1979). Однако высокие значения содержаний рудных элементов во вмещающих породах - явно результат постмагматических процессов. Территория рудного района в той или иной степени подвержена постмагматическому обогащению рудными элементами. Только в одних случаях это носит скрытый характер, когда осадочные породы выделяются лишь повышенными содержаниями рудных элементов, в других случаях - образованием рудной минерализации или промышленных залежей. Все сказанное подтверждает результаты предыдущих исследователей о гидротермальном пути привноса рудных комплексов из магматических очагов, использующих зоны разломов как пути продвижения гидротерм, и о том, что осадочные породы не могли быть источником рудных месторождений. Проведенные нами (Мустафаев и др.,1984) минералого-геохимические исследования по вмещающим месторождения осадочным породам Южного склона Большого Кавказа подтверждают выводы о том, что повышенные концентрации рудных элементов в Балакен-Загатальском рудном районе, насыщенном месторождениями и рудопроявлениями, зонами минерализации и магматическими образованиями, являются ничем иным как местным, локальным повышенным фоном.

Магматические породы как источники рудного вещества. Исследователями Южного склона Большого Кавказа отмечалось, что парагенетическая связь медно-пирротинового оруденения с магматизмом региона более достоверна, тогда как связь колчеданнополиметаллического оруденения с магматизмом менее определенна, тем не менее, она предполагается. Действительно, месторождения медно-пирротиновой формации, в отличие от колчеданно-полиметаллических, тесно ассоциируют с магматическими телами, которые несут определенные признаки геохимической специализации. Возможно, близостью магматических тел в Кацдагском месторождении объясняются температуры кристаллизации кварца и халькопирит-сфалеритового агрегата в 340-165 и 270-235 градусов соответственно (по данным гомогенизации и декрепитации, Велизаде, 1981) что значительно выше, чем в Филизчайском месторождении, где температуры составляют 150-120 градусов по кварцам и 130-65 градусов по рудам (Твалчрелидзе, 1987), что может быть объяснено удаленностью месторождения от магматических тел (или очагов).

Исследования магматических пород Южного склона Большого Кавказа (как петролого-геохимические, так и геохронологи-

ческие) позволяют их разделить на три группы: І – нижнеюрскую формацию натриевых базальтов (ранее называющуюся габбродиабазовой, спилитовой и т.д.) II - среднеюрскую андезит-дацит-риолитовую и III верхнеюрскую габбро-диорит-плагиогранитовую. Содержания рудообразующих элементов (Cu, Zn, Pb, Co) распределены по формациям и типам пород следующим образом (табл.4). В нижнеюрских базальтах и их субвулканических фациях (в виде даек, силлов, штоков, пластовых интрузий-даек) лишь содержание цинка выше кларка в 1,5-2 раза, тогда как остальные элементы содержатся в близкларковых (но ниже кларка) количествах. Но в среднеюрских андезитах, дацитах, риодацитах и риолитах содержание всех рудообразующих элементов выше кларка в несколько раз. Так, в зависимости от типа пород кларк концентрации (КК) для меди составляет 5,2-6,2; для цинка – 4,1-4,8; свинца -2,6-9,2, при этом в риолитах, как наиболее кислых, обогащенных калием породах, КК достигает максимума (КК=9,2), а КК кобальта, варьируя в пределах 2,4-1,3, понижается от андезитов к риолитам, оставаясь тем не менее выше кларка. В габбро-диоритплагиогранитовой формации верхней юры распределение элементов в зависимости от типа пород также различается. Содержание свинца во всех типах пород ниже кларка (КК = 0,5-0,9). Содержание меди в габброидах в 1,5 раза выше, а в диоритах, кварцевых диоритах и плагиогранитах в 4-5 раз выше кларка (КК=4,8-5,4), в них же содержание цинка в 3-4 раза выше кларка (КК=3-4). Но содержание кобальта от габбро к кварцевым диоритам повышается от 48,5 г/т до 94,9 г/т, однако резко понижается в плагиогранитах до 3,5 г/т.

Таким образом, за исключением базальтов и долеритов нижней юры, все средне- и верхнеюрские эффузивы и интрузивные породы характеризуются вышекларковыми содержаниями Си, Zn, Со, что можно принять как их металлогеническую (геохимическую) специализацию. Соответственно, можно утверждать, что источником рудного вещества колчеданно-полиметаллических и медно-пирротиновых месторождений были магматические очаги.

Таблица 4

Средние содержания (в числителе, в г/т) и коэффициенты концентрации (в знаменателе) элементов главных типов магматических пород Южного склона Большого Кавказа (по Керимову, 1991).

Формации	Породы	Cu	Zn	Pb	Co
Габбро-диорит- плагиогранитовая, Верхняя юра	плагиограниты	$\frac{95,0}{4,8}$	180 3,0	$\frac{19,8}{0,9}$	$\frac{35,0}{7,0}$
	кварц.диориты	$\frac{190}{5,4}$	$\frac{227}{3,2}$	$\frac{8,2}{0,5}$	94,9 4,7
	диориты	171,7 4,9	$\frac{290,6}{4,0}$	$\frac{8,6}{0,6}$	$\frac{57,0}{2,9}$
	габбро	104,9	$\frac{110}{0,8}$	$\frac{6,1}{0,7}$	48,5
Андезит-дацит-риолитовая, Средняя юра	риолиты	110 5,5	280,4 4,6	183,6 9,2	6,8 1,3
	риодациты	$\frac{123,3}{6,5}$	$\frac{287,5}{4,8}$	84,5 4,4	$\frac{10,3}{2,0}$
	дациты	$\frac{107,5}{5,3}$	248,7 4,1	$\frac{52,8}{2,6}$	$\frac{10,8}{2,1}$
	андезиты	$\frac{181}{5,2}$	$\frac{340}{4,7}$	$\frac{45,7}{3,0}$	$\frac{24}{2,4}$
Формация натриевых базальтов (габбро-диабазы, спилиты и др.) Нижняя юра	долериты	$\frac{64,8}{0,7}$	183,5 1,4	$\frac{7,9}{0,9}$	$\frac{33,8}{0,7}$
	Базальты	$\frac{96,6}{0,9}$	$\frac{290}{2,2}$	$\frac{6,8}{0,8}$	$\frac{30,6}{0,7}$

Многочисленные исследования изотопов серы колчеданных месторождений Южного склона Большого Кавказа (Гриненко и др., 1971; Заири, 1972 и др.) свидетельствуют о ювенильном источнике рудного вещества колчеданных месторождений региона. При этом установлена зональность в распределении типов месторождений (Курбанов, 1982), выраженная сменой медно-пирротинового оруденения в центральной, осевой зоне глубоководного трога, через медно-пирротиновое, смешанное с колчеданнополиметаллическим, колчеданно-полиметаллическим, а на самой периферии жильным полиметаллическим оруденением, что свидетельствует об участии в рудообразовании кислых пород кристаллического фундамента или скорей прилегающей континентальной коры (Закавказской плиты).

О глубинных источниках рудного вещества и рудообразующей системе «ман**тия – руда».** Говоря о глубинном источнике элементов рудных залежей, необходимо оговорится - о какой глубине идет речь. Необходимо обратить внимание на два момента. Первое. Магматические породы, обусловившие формирование рудных залежей, дифференцированы от базальтов до андезит-дацитов в эффузивной фации и от габбро до плагиогранитов – в интрузивной. Это дает возможность судить об относительной глубине зарождения магматических очагов - не ниже низов коры или верхов мантии, но на подкоровом уровне. Появление средних и кислых типов пород свидетельствует не только о смене геодинамического режима растяжения сжиманием с началом формирования островной дуги, но и о восходящем перемещении магматических очагов и контаминации их в пределах континентальной коры с дальнейшей дифференциацией магмы. Второе. Об относительной глубине можно судить также по результатам изотопных анализов серы сульфидных минералов месторождений, свидетельствующих о том, что в формировании колчеданных месторождений определенное участие принимала сера водных бассейнов, т.е. гидротермальные растворы достигали настолько высоких уровней, что смешивались либо с близповерхностными вадозными, либо же донными морскими водами. В любом случае процесс рудообразования происходил при высоком коровом уровне дифференциации магматизма и соответственно отделения от них рудоносных рассолов. Однако минеральный и геохимический состав рудных залежей показывает, что на вещественный состав уже сформированных колчеданных месторождений влияли и другие источники, вероятно, из более глубоких зон мантии, возможно, уровня нижней мантии, которые не только воздействовали на состав месторождений, но и образовывали рудопроявления непосредственно, минуя этап магмаобразования, т.е. образуя напрямую систему рудообразования «мантия - руда». Об этом можно судить по месторождениям ртути, распределение которых связано не с проявлениями магматизма, а с тектонической обстановкой.

Анализ распространения ртутного оруденения как на Большом, так и Малом Кавказе и образование ртутными месторождениями ртутоносных поясов позволяет сделать вывод о том, что образование ртутных и, возможно, золоторудных месторождений, ассоциирующихся с ними, напрямую связано с мантийными эманациями (Мустафаев, Мустафаев, 2007). В пределах глубинных разломов, если даже не образуются ртутоносные пояса, ртутизация накладывает отпечаток на уже сформированные колчеданные месторождения, тесно приуроченые также к зонам глубинных разломов. На Южном склоне Большого Кавказа, в отличие от Северного Кавказа и центральной части Малого Кавказа, ртутный пояс не выделяется, но месторождения колчеданно-полиметаллических и медно-пирротиновых руд (Филизчайское, Катехское, Кизил-Деринское и др.) характеризуются повышенными содержаниями ртути (Черницын, 1977), а восточнее, в пределах дагестанской части металлогенической зоны, уже имеются собственно ртутные месторождения (Хпек, Гапцах и др.), что свидетельствует об активизации нового глубинного источника в неогене после завершения формирования в мезозое месторождений колчеданного семейства. Кроме того, в продолжении Главнокавказской металлогенической зоны в пределах Дагестана установлено (Колчеданные месторождения..., 1973) рудопроявление кобальта (Цимирцы) и выделена самостоятельная халькопирит - кобальтовая субформация. Согласно Л.И.Когарко, кобальтовая минерализация - закономерный признак связи оруденения с мантийными зонами. Зональность в распределении месторождений колчеданного семейства, установленная на Южном склоне Большого Кавказа, по А.Д. Щеглову (1987), также является одним из критериев мантийного происхождения источников руд. Исходя из всего вышесказанного, можно сделать вывод о том, что сонахождение магматических и рудных тел является не генетическим, а парагенетическим, как производное различных стадий единого процесса. Вот эта парагенетичность связи оруденения с магматизмом может затушевывать последующие мантийные эманации, без формирования магматических очагов прорывающиеся в верхние горизонты по ослабленным тектоническим зонам, независимо от заполнения благоприятных пространств магматическими или рудными телами, соосаждая ртуть и часто золото, как спутник ртути, поскольку физико-химические свойства золота и ртути позволяют им совместно участвовать в формировании месторождений (Степанов, Берзон, 1983), образуя комплексные руды. В случаях отсутствия магматических тел или рудных залежей элементы, привнесенные мантийными эманациями, могут осаждаться в карбонатных или органогенных породах, а также в тонких фракциях терригенных пород.

Рассматривая формирование месторождений на Южном склоне Большого Кавказа с этой точки зрения, можно допустить, что необязательно ожидать и искать руду только в связи с магматическими телами. Рудообразование может происходить также напрямую, вообще без проявления магматизма, в резуль-

тате эксгаляции мантийных флюидов в верхние горизонты. Наглядным примером этого процесса служат месторождения и рудопроявления ртути. Следует отметить, что в 1983 г. бывшим Министерством геологии СССР во все геологические организации была направлена «Информационная записка» о ревизии ртутных месторождений ввиду того, что в ряде регионов было установлена тесная ассоциация ртутных и золоторудных месторождений (Степанов, Берзон, 1983). Отсюда можно заключить, что если ртутные месторождения образовались без проявления магматизма, напрямую образуя систему «мантия – руда», то золото также могло быть вынесено мантийными эманациями по разломам в самые верхние этажи земной коры. По данным различных исследователей, в зонах глубинных разломов могут формироваться этим путем также молибденовые и вольфрамовые оруденения (Щеглов, 1987). А это уже значительное расширение поисковых площадей, перспективных на обнаружение рудных залежей, не характерных для региона. А главное - новый источник рудного вещества. Отметим, что ранее мантийные эманации назывались «трансмагматическими» по терминологии академика Д.С. Коржинского, теперь в моде «плюмы». Мы умышленно не апеллируем терминами «плюм» и др. ввиду того, что эти процессы на Кавказе еще нелостаточно исследованы.

Заключение

Даже при хорошей изученности геологии региона и выявленных многочисленных рудных месторождений вопрос о его потенциале, т.е. выявлении новых рудных залежей, требует дополнительных исследований. Другими словами, парагенетическая (или генетическая) связь оруденения с магматизмом в рифтогенных зонах является достаточно достоверным поисковым признаком. Однако одновременно она служит определенной психологической преградой для поисков рудных тел вдоль региональных разломов при отсутствии выходов магматических пород. Отмечено (Щеглов, 1987), что в случае раздвига земной коры с образованием глубинных разломов последние имеют наибольшую протяженность, а рудные образования могут прослеживаться по всей длине их развития. Данное утверждение подтверждается также материалами по восточному Кавказу. Так, бывшим Управлением геологии при СМ Азерб. ССР в 1982 г. была издана карта геохимических аномалий Азерб. ССР в масштабе 1:500 000, в которой за пределами Балакен-Загатальского рудного района вдоль восточного продолжения региональных разломов отмечены аномалии в содержании свинца, цинка, меди, молибдена, кобальта коренных пород (Объяснительная записка..., 1982). В последние годы на восточном окончании металлогенической зоны Большого Кавказа Г.Велиевым установлены аномалии содержания вольфрама и ряда других элементов. Все приведенные данные свидетельствуют о том, что мантийные эманации охватывают значительную часть протяженных глубинных разломов и могут явиться источником рудного вещества месторождений ряда металлов (ртути, золота и др., включая такие литофильные элементы, как молибден, вольфрам и др.), которые могут быть выявлены в пределах глубинных разломов и без проявления магматических образований.

ЛИТЕРАТУРА

- АЛИ-ЗАДЕ, Ак.А. (под ред.). 2005. Геология Азербайджана, т.VI Полезные ископаемые. Nafta-Press. Баку. 95-116, 159-201.
- АЛИ-ЗАДЕ, З.М., МУСТАФАЕВ, Г.Л. 1987. Геохимические особенности раннегеосинклинальных осадочных пород Восточного Кавказа. *Литология и полезные ископаемые*, 2, 113-121.
- БУЛКИН, Г.А., МУСТАФАЕВ, Г.В. 1984. К методике количественного прогнозирования. *Геология рудных месторождений*, 5, 65-72.
- ВЕЛИЗАДЕ, С.Ф. 1981. Минеральный состав и условия формирование руд Кацдагского колчеданно-полиметаллического месторождения Большого Кавказа. Автореф. канд.дисс. Москва.
- ГЕОЛОГИЯ СССР, т.47 Азербайджанская ССР. Полезные ископаемые. 1976. Недра. Москва. 407.
- ГРИНЕНКО, Л.Н., ЗЛОТНИК-ХОТКЕВИЧ, А.Г., ЗАИРИ, Н.М. 1971. Изотопы серы Филизчайского колчеданнополиметаллического месторождения на Кавказе. *Геология рудных месторождений*. 1, 13, 62-75.
- ЗАИРИ, Н.М. 1972. Закономерности вариаций изотопного состава серы сульфидов и некоторые вопросы формирования колчеданных залежей Белокано-Закатальского рудного района Большого Кавказа. Автореф.канд.дисс. Москва.
- КАШКАЙ, М.А., АЛИЕВ, А.А., ГАДЖИЕВ, С.М. и др. 1979. Геохимия и минералогия колчеданных

- месторождений Южного склона Большого Кавказа. Элм. Баку.
- КЕРИМОВ, Р.Б. 1991. Петрология и рудоносность магматических комплексов Белокано-Закатальского рудного района (Большой Кавказ). Автореф. канд. дисс. Баку.
- КОЛЧЕДАННЫЕ месторождения Большого Кавказа. 1973. Недра. Москва. 255.
- КОЛЧЕДАННЫЕ месторождения мира. 1979. Недра. Москва.
- КУРБАНОВ, Н.К. 1982. Критерии поисков и принципы прогнозирования комбинированных колчеданно-полиметаллических месторождений в альпийской терригенной геосинклинали Большого Кавказа. *Тр.ЦНИГРИ*,168. 87-97.
- МИНЕРАЛЬНО-СЫРЬЕВЫЕ ресурсы Азербайджана. 2005. Озан. Баку. 193-224, 291 340.
- МУСТАФАЕВ Г.В., МУСТАФАЕВ М.А. 2007. Геодинамическая обстановка, магматизм и эндогенные рудные месторождения как взаимосвязанные элементы модели рудообразования (на примере мезозоя Азербайджана). Тр. Ин-та геологии НАНА, 35, 124-140.
- МУСТАФАЕВ, Г.В. 2002. Основные черты металлогении Азербайджана. Nafta-Press. Баку. 232.
- МУСТАФАЕВ, Г.В. 2005. Основные закономерности размещения и формирования месторождений метал-

- лических полезных ископаемых. В кн.: *Геология Азербайджана, т.VI Полезные ископаемые.* Nafta-Press. Баку. 344-354.
- МУСТАФАЕВ, Г.В., МУСТАФАЕВ, М.А., КЕРИМОВ, Р.Б., РАГИМОВ, Г.А. 1984. Изучение золотоносности черносланцевой толщи Южного склона Большого Кавказа. Рукопись НИР. Фонды Института геологии.
- НОВРУЗОВ, Н.А. 2005. Редкие и рассеянные элементы. В кн.: *Геология Азербайджана, т.VI Полезные ископаемые.* Nafta-Press. Баку. 335-343.
- ОБЪЯСНИТЕЛЬНАЯ записка к карте геохимических аномалий Азербайджанской ССР масштаба 1:500.000. 1982. Баку, 71.
- СМИРНОВ, В.И. 1976. В кн.: Источники рудного вещества эндогенных месторождений. Наука. Москва. 5-11.
- СТЕПАНОВ, В.А., БЕРЗОН, Р.О. 1983. О связях золота и ртути в рудообразующих процессах. *Советская геология*, 1, 54-56.
- ТВАЛЧРЕЛИДЗЕ, А.Г. 1987. Геохимические условия образования колчеданных месторождений. Недра. Москва. 188.
- ЧЕРНИЦЫН, В.Б. 1977. Металлогения Большого Кавказа. Недра. Москва. 191.
- ІЩЕГЛОВ, А.Д. 1987. Основные проблемы современной металлогении. Недра. Ленинград. 231.