© А.Я.Кабулова, Э.Ф.Алекперов, С.М.Байрамова, Е.Д.Севдимова, 2007

ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ СЕРОВОДОРОДА В ПРИРОДНЫХ ГАЗАХ АЗЕРБАЙДЖАНА

А.Я.Кабулова, Э.Ф.Алекперов, С.М.Байрамова, Е.Д.Севдимова

Институт геологии НАН Азербайджана AZ1143, Баку, просп. Г.Джавида, 29A

В статье подробно описывается изменение распределения H_2S в составе газов минеральных источников, грязевых вулканов, в попутных и водорастворенных газах, а также в газогидратах. Также приводится сравнительный анализ содержания сероводорода в исследуемых объектах.

По количественному содержанию сероводорода в углеводородных соединениях природные газы Азербайджана относятся к категории ценных.

Полученные фактические материалы по попутным и водорастворенным газам нефтегазовых залежей, закономерностям распределения H_2S в грязевых вулканах с учетом увеличения его количества после извержения позволяют прогнозировать количественное содержание сероводорода в газах глубокозалегающих месторождений.

Важнейшей научно-практической задачей изучения химического состава газов является выявление закономерностей их распределения, которые служат индикаторами при поиске и разведке нефтегазовых залежей. Сероводород, наряду с основными компонентами природных газов: углеводородами (УВ), углекислотой, азотом и другими компонентами и примесями, является непременной составляющей частью природных газов. Изучение содержания сероводорода в составе УВ природных газов имеет важное значение, так как при эксплуатации, переработке и транспортировке он всегда является нежелательным компонентом. По сравнению с другими газами, входящими в состав природных газов Азербайджана, сероводород изучен мало. Единичные значения Н2S в газах грязевых вулканов приводятся в работе (Ковалевский, 1940).

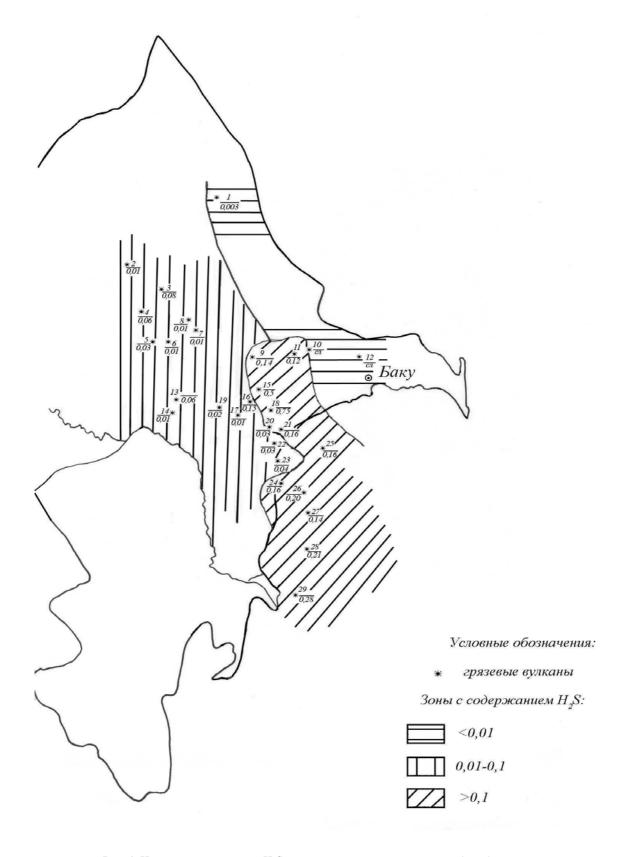
В работе Кашкая М.А. «Минеральные источники Азербайджана» выделяются минеральные источники с выходами углеводородов, углекислого газа и сероводорода. В этой работе также приводится карта «Природные газы Азербайджана», составленная Кашкаем М.А. и Жабревым Д.В., в которой отмечены выходы сероводородных минеральных источников, распространенных в южной части Большого Кавказа.

Сероводород изучен нами в газах минеральных источников, грязевых вулканов, в попутных и водорастворенных газах, а также в газогидратах.

В минеральных источниках Азербайджана свободный сероводород обычно сопровождает сернистые источники, но содержание его в газовой смеси небольшое. Основным компонентом газов минеральных источников является углекислый газ, азот и метан. Минеральные источники с углекислым составом газа развиты на Малом Кавказе и частично в Талышской складчатой зоне (Бюлюдул, Вергядуз и т.д.), а с азотным (Бум, Джимжимах, Тенгиалты и т.д.) и метановым составом (Гурмухбулаг, Хал-Хал, Алтыагадж и т.д.) – в юго-восточной части Большого Кавказа. Благодаря пониженному содержанию сероводорода в составе газов минеральных источников, воды источников широко используются в Азербайджане. Запах Н₂S у источников довольно сильный благодаря его способности к эвазии. Наличие запаха Н2S при выходе минерализованной воды на поверхность объясняется легкой растворимостью его в воде. Тем не менее, сильный запах H₂S не является показателем высокого его содержания в водах (0,1% свободного и 0,2% связанного).

На 32 грязевых вулканах Азербайджана в разное время отобраны пробы газов и изучен их состав по 120 анализам (средние содержания даны в таблице 1). Содержание H_2S в составе газа грязевых вулканов изменяется от следов до 0,75%; из них по данным анализов газов 14 грязевых вулканов содержание H_2S низкое (0,1-0,7%); а 18 грязевых вулканов — очень низкое (менее 0,1%) (Кабулова и др., 1989).

Низкие значения H_2S в составе газов грязевых вулканов подтверждаются рядом факторов: твердые выбросы грязевых вулканов представлены терригенными породами; содержание сульфатных минералов очень незначительно.


По данным грязевых вулканов нами составлена карта распределения H_2S (рис. 1). По содержанию H_2S выделены 3 зоны. Первая зона с минимальным содержанием H_2S (<0,01%) в газах грязевых вулканов охватывает Прикаспийско-Губинский и Абшеронский

нефтегазоносные районы; вторая зона с содержанием H_2S 0,01-0,1% охватывает грязевые вулканы, расположенные в северном, центральном, юго-западном Гобустане и Нижнекуринском районе; третья зона с максимальным значением $H_2S>0,1\%$ в форме полосы, отделяющей первую и вторую зоны, охватывает грязевые вулканы, расположенные в северной части юго-западного и юго-восточного (Джейранкечмесская депрессия) Гобустана, грязевой вулкан Хамамдаг и все грязевые вулканы Бакинского архипелага.

 Таблица 1

 Химический состав газов грязевых вулканов Азербайджана

	Наименование Вулкана		Средни					
NºNº		CH ₄	ΣТУ	CO ₂	N ₂	H ₂ S	на карте	Примечания
1	Кайнарджа	96,23	0,08	0,52	2,94	0,003	1	
2	Абиха	95,30	0,16	0,6	4,0	Следы	12	
3	Арбат	94,10	0,10	0,8	5,0	Следы	10	
4	Перекишкюль	94,52	0,32	2,06	2,93	0,12	11	
5	Демирчи	94,6	0,15	1,70	3,5	0,01	2	
6	Астраханка	94,33	0,15	0,95	4,5	0,08	3	
7	Мадраса	91,43	0,09	6,76	1,65	0,06	4	
8	Набур	98,4	0,3	0,3	1,02	0,01	8	
9	Мелик-Чабанлы	91,6	0,4	2,4	5,6	0,03	5	
10	Гушчу	94,6	0,2	4,9	0,5	0,01	6	
11	Чайкурбанчи	96,64	0,19	0,26	2,95	0,01	7	
12	Донгуздык	92,78	3,93	1,4	1,7	0,14	9	
13	Чеилахтарма	95,58	0,37	1,78	2,28	0,15	16	
14	Чеилдаг	96,6	1,0	0,7	1,7	0,15	15	
15	Календарахтарма	97,46	0,28	0,77	1,48	0,01	17	
16	Шокихан	93,91	0,16	3,47	1,81	0,02	19	
17	Утальги	87,3	1,12	7,4	2,89	0,75	18	
18	Готурлыг	96,87	1,02	0,62	1,45	0,16	21	
19	Айрантекен	98,0	0,008	0,83	1,13	0,03	20	
20	Готурдаг	97,11	0,008	0,86	1,97	0,03	22	
21	Дашгиль	98,4	следы	0,5	1,0	0,04	23	
22	Ахтармаарды	96,0	0,1	13,3	0,4	0,06	13	
23	Ахтарма-Пашалы	97,4	0,01	1,36	1,1	0,01	14	
24	Хамамдаг	88,0	7,76	2,28	1,86	0,16	24	до извержения
25	Хамамдаг	75,28	14,14	0,61	8,5	1,44	24	после извержения
26	Хара-Зиря	96,02	1,51	0,5	1,73	0,18	25	•
27	Гара-су	96,72	0,55	0,74	2,0	0,2	26	
28	Санги-Мугань	95,46	1,62	0,8	1,96	0,24	27	
29	Чигиль	97,58	0,5	0,3	1,4	0,22	28	
30	Кюрдашы	89,31	7,3	0,96	2,17	0,28	29	
31	Банка Ливанова	79,6	16,6	1,1	1,8	0,9		после извержения
32	Алачыг	90,8	0,54	0,48	8,17	0,009		•
33	Кила-Купра (западная)	90,7	4,0	2,9	2,24	0,16		

Рис. 1. Изменение содержания H_2S в составе газа грязевых вулканов Азербайджана.

Различие значений H_2S по вулканам связано со следующими геолого-геохимическими факторами: тектоническими условиями, структурным положением, литологическим составом пород, соотношением флюидов, гидрохимическими условиями и т.д. Выделение зоны в целом обусловлено увеличением в южном и юго-восточном направлении мощности осадков, слагающих грязевые вулканы, а также поступлением газа из зон АВПД. Следует отметить, что в составе газа грязевого вулкана, отобранного сразу после извержения, по сравнению со спокойной деятельностью содержание H_2S в несколько раз повышено.

Водорастворенные газы изучены в 15 (35 анализов) (таблица 2) нефтегазовых месторождениях Азербайджана. По имеющимся анализам составлена карта распределения H_2S в водорастворенных газах (рис. 2).

По водорастворенным газам выделяются 3 зоны (рис.2): первая - со значениями $H_2S<0,1\%$, вторая зона – со значением 0,1-0.5%, а третья зона ->0.5%. Первая зона охватывает водорастворенные газы Прикаспийско-Губинского и частично Абшеронского нефтегазоносных районов; вторая зона выделена в пределах Нижнекуринского нефтегазоносного района. Третья зона с наибольшим значением H₂S (0,6-0,85%, т.е. >0,5%), расположена (среднеэоценовые и верхнемеловые отложения) в Евлах-Агджабединском районе. В первой и второй зонах в юго-восточном направлении отмечено общее уменьшение H₂S, а в третьей зоне, наоборот, с северо-запада на юго-восток содержание H₂S в водорастворенных газах увеличивается.

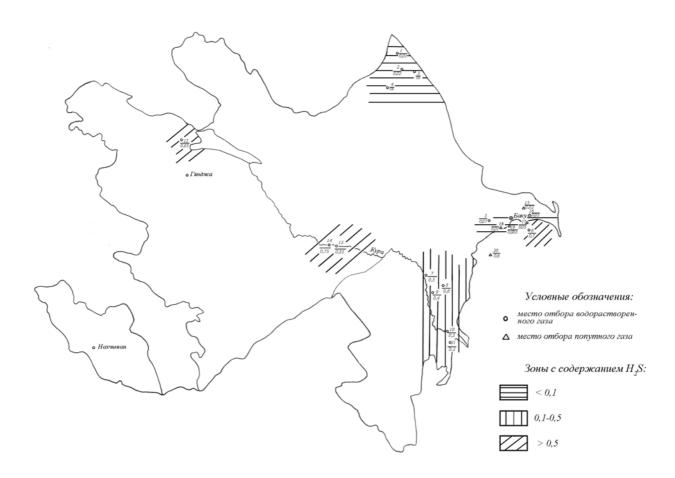


Рис. 2. Изменение содержания Н₂Ѕ в составе водорастворенных газов нефтегазовых месторождений Азербайджана.

Сопоставление содержания H_2S в водорастворенных газах плиоценовых отложений с таковыми среднеэоценовых и верхнемеловых отложений показывает, что газы последних более обогащены сероводородом. Это связано с литологическим составом пород. Так, в водорастворенных газах плиоценовых отложений, представленных терригенными породами, содержание H_2S незначительно, так как он осаждается катионами металлов в виде FeS, FeSO₄, MgSO₄ и т.д. В водорастворенных газах среднеэоценовых и верхнемеловых отложений Евлах-Агджабединского района, представленных вулканогенно-карбонатными породами, концентрация сероводорода выше.

Основным показателем водорастворенных газов является газонасыщенность, которая в исследованных месторождениях изме-

няется от $0.02 \text{ м}^3/\text{м}^3$ до $31.3 \text{ м}^3/\text{м}^3$. Для выявления зависимости содержания H_2S от газонасыщенности (таблица 2) составлен график (рис. 3, а). Как видно из графика, с увеличением газонасыщенности содержание H_2S в водорастворенном газе увеличивается.

Попутные газы изучены (70 анализов) в 6 нефтегазовых месторождениях Азербайджана (таблица 2). От месторождения Балаханы-Сабунчи-Раманы к месторождению Сураханы-Гарачухур и далее на юг-юго-восток к месторождению Дуванный-дениз в составе газов ПТ содержание H_2S увеличивается. Увеличение H_2S наблюдается и по стратиграфическому разрезу. Так, по месторождению Сураханы, начиная с I горизонта ПТ, и до ПК свиты содержание H_2S увеличивается от 0,001 до 0,091%.

 Таблица 2

 Химический состав водорастворенных газов Азербайджана

	Наименование месторождения	Страт. возраст	Глубина отбора (м)	Газона-	Газона- Средние значения газа в					
№№				сыщен- ность, м ³ /м ³	CH ₄	ΣТУ	CO ₂	N ₂	H ₂ S	№ на карте
1	2	3	4	5	6	7	8	9	10	11
1	Ялама	верх. ПТ	1700	0,02	70,0	0,036	сл.	29,9	0,01	1
2	Худат	ниж. м.	2400	0,04	94,39	3,01	0,12	2,69	0,02	2
3	Гусары	ср. юра	2500	0,01	89,65	0,0001	0,001	10,0	СЛ.	3
4	Набрань	верх. ПТ	1500	0,02	34,6	2,4	4,06	58,85	сл.	4
5	Кер-гез	верх. ПТ	970	0,8	98,2	0,62	0,66	0,43	0,07	5
6	Гум-дениз	ПК	3170	31,29	91,5	6,4	0,03	0,36	1,0	6
7	Гум-дениз	IX ПТ	2300	20,0	93,62	5,82	0,1	0,1	0,25	
8	Кюровдаг	ср. Ар	1520	0,882	76,44	21,35	0,1	2,01	0,25	7
9	Кюровдаг	ΙПТ	1450	1,5	85,15	5,92	0,48	7,38	0,76	
10	Гарабаглы	Ap	1760	2,453	95,0	2,6	0,02	2,2	0,10	9
11	Гарабаглы	ПΠТ	2500	2,325	89	7,0	0,01	3,1	0,40	
12	Кюрсангя	ΙПТ	2700	2,7	91,4	3,85	0,17	4,2	0,21	8
13	Нефтчала	ΙПТ	2000	1,8	90,36	2,0	0,77	6,51	0,30	11
14	Хиллы	ΙПТ	1100	0,85	87,68	0,1	0,15	11,75	0,35	10
15	Хиллы	ПΠТ	1200	0,80	91,56	0,003	0,44	7,8	0,14	
16	Хиллы	VIΠT	1700	0,89	92,34	0,02	0,57	7,06	0,17	
17	Джафарлы	ср. эоц.	2800	8,3	59,37	28,2	0,06	11,64	0,75	14
18	Тарсдалляр	ср. эоц.	3000	2,474	64,82	32,6	сл.	0,51	0,57	12
19	Мурадханлы	ср. эоц.	1800	12,5	58,86	35,14	0,08	5,07	0,85	13
20	Мурадханлы	в. мел	3000	11,718	71,8	19,7	0,02	8,0	0,80	

 Таблица 3

 Химический состав газов нефтегазовых месторождений Азербайджана

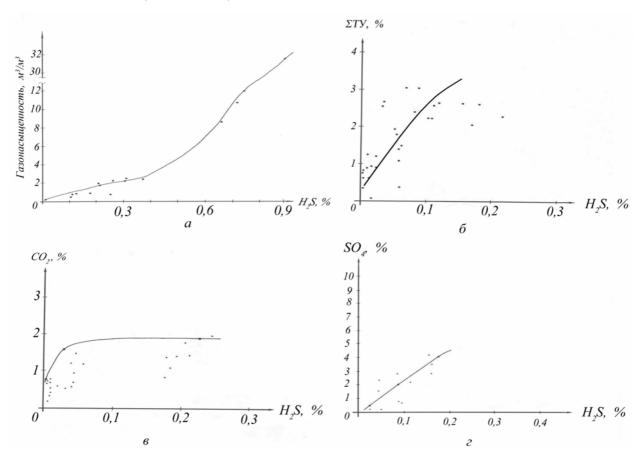
NºNº	Наименование месторождения	Возраст вмещающих пород	Средние значения, в %						
			CH ₄	ΣТУ	CO ₂	H ₂ S	№ на карте		
1	Балаханы-Сабунчи-	КС	95,3	4,3	0,4	0,02	15		
1	Раманы	ПК	87,58	3,09	9,32	0,02	15		
		ПТ	91,5	3,69	4,86	0,02			
	Сураханы	I	58,84	11,9	29,2	0,0013			
		II	67,34	5,96	26,69	0,0055			
		III	65,67	5,07	21,4	0,051	1.6		
2		IV	60,01	6,39	33,65	0,0052	16		
		V	63,27	8,6	28,12	0,0047			
		НКГ	79,92	9,4	10,67	0,03			
		ПК	90,17	4,27	5,46	0,091			
		ПТ	69,31	7,37	22,17	0,028			
3	Гарачухур	ПК	88,6	5,67	6,75	0,049	17		
4	Локбатан	VII	84,9	4,25	10,8	0,015	18		
		ПК	92,89	4,96	2,15	0,001	18		
		ПТ	88,94	4,54	6,47	0,008			
	Бибиэйбат	III	75,71	10,91	13,4	0,002			
		V	82,3	10,51	7,18	сл.	19		
		VII	75,87	12,8	11,33	сл.			
5		XI	74,38	12,22	13,4	сл.			
		XII	70,47	11,19	18,34	сл.			
		XV	85,19	10,11	4,76	0,001			
		ПК	94,29	3,31	2,3	0,004			
		ПТ	91,5	3,69	4,86	0,001			
6	Дуванный-дениз	VII	89,18	10,0	0,25	0,57	20		

Амурским и др. (1977) установлено, что от нефтегазовых к газонефтяным и газоконденсатным типам залежей содержание H₂S увеличивается. Так, для залежей, где газоконденсатный фактор равен 100; 200 м³/т, содержание $H_2S < 1$, а где он более 1000 м³/т, содержание $H_2S > 1$. Нами сопоставлено содержание H₂S нефтегазовых месторождений с коэффициентом газоносности отдельных месторождений и свит. В результате выяснено, что с увеличением газоносности содержание H₂S увеличивается. Так, по ПК свите на Балаханы-Сабунчи-Раманинском месторождении коэффициент газоносности составляет 9,8, а содержание H₂S - 0,02%; соответственно для месторождения Сураханы эти значения составляют 108,0 и 0,091%, а для месторождения Гарачухур – 56,5 и 0,05%.

Изменение содержания H_2S и соответственно газоносности наблюдается и по разрезу от сураханской к ПК свите. Так, на месторождении Сураханы от сураханской свиты к ПК свите газоносность увеличивается от 28,0 до 108, а содержание H_2S увеличивается от 0,0013 до 0,091%, по месторождению Бибиэйбат эти величины изменяются соответственно от 9,0 до 100 и от 0,002% до 0,004%. На месторождении 8 Марта (Дуванный-2) для низов VII горизонта ПТ газоконденсатный фактор составляет 200 M^3 /т, а содержание $H_2S = 0,57\%$.

Для выявления взаимосвязи сероводорода с некоторыми компонентами, входящими в состав газов грязевых вулканов, по средним значениям составлен график зависимости H_2S от ΣTY и CO_2 . Как видно из графиков (рис. 3, б, в), с увеличением H_2S содержания

ΣТУ и CO₂ в составе газа увеличиваются. Однако вышеуказанная зависимость для попутных и водорастворенных газов нефтегазовых залежей не наблюдается. Видимо, здесь имеет место влияние других факторов.


Одной из основных геохимических особенностей сероводорода является чрезвычайно высокая его растворимость в жидких пластовых флюидах. С этих позиций рассмотрена зависимость между содержаниями SO_4^{2-} в водах грязевых вулканов и H_2S в составе газа.

Как известно, воды грязевых вулканов бессульфатны или содержат их в себе в незначительном количестве. Для одних и тех же грязевых вулканов определены содержания SO_4^{2-} в водах и H_2S в составе газа и составлен график (рис. 3, г), указывающий на их прямую зависимость.

Из-за отсутствия данных по содержанию ${\rm SO_4}^{2\text{-}}$ в водах изученных попутных и во-

дорастворенных газов составление для них подобных таблиц и графиков оказалось невозможным. Однако известно, что воды нефтегазовых залежей, как и воды грязевых вулканов, бессульфатны и содержание H_2S в них незначительно. В таком случае вышеуказанную зависимость можно применить и для нефтегазовых залежей.

В результате многолетних исследований (Гусейнов, Дадашев, 2000) на дне Каспийского моря открыты скопления газогидратов (месторождения Буздаг, Элм и Абиха). Анализ гидратов показал, что они имеют углеводородный состав и характеризуются весьма высоким содержанием метана. В изученных гидратных газах неизменно присутствует сероводород. Его запах ощущается во всех пробах, поднятых со дна, а содержание изменяется от 0,03 до 0,87%.

Рис. 3. Зависимости содержания H₂S от:

- а) газонасыщенности водорастворенных газов;
- б) содержания ΣТУ в составе газа грязевых вулканов;
- в) содержания СО₂ в составе газа грязевых вулканов;
- г) изменения сульфатного иона в водах газа грязевых вулканов.

Сопоставление содержания сероводорода в природных газах показывает, что пределы изменения H_2S для газов грязевых вулканов колеблются от следов до 0,75% (в среднем 0,44%), для водорастворенных газов — от следов до 1,0% (в среднем 0,34%), для попутных газов — от следов до 0,09% (в среднем 0,04%) и для газогидратов — от 0,03% до 0,87% (в среднем 0,30%).

По средним величинам наибольшими значениями H_2S характеризуются водорастворенные газы и газогидраты. Как по пределам изменения, так и по средним величинам в попутных газах содержание H_2S наименьшее.

В целом, 80% природных газов Азербайджана по содержанию H_2S относятся к очень низким, 19,6% — к низким и 0,4% — к средним категориям.

Определенный интерес представляют пути образования сероводорода в нефтегазоносном бассейне. Сероводород в изученных природных газах может образоваться следующими путями.

На малых глубинах он образуется под влиянием микробиальных процессов на участках активной инфильтрации пресных вод. Наличие серобактерий в водах продуктивной толщи (НКГ, НКП, КС) впервые было обнаружено Малышеком и др. (1935) на глубине 1300-1400 м. По их мнению, сульфатные, пурпурные бактерии способствуют образованию Н2S. Этим авторы подтверждают высказывания Вернадского В.И. о том, что такие бактерии могут существовать еще глубже, чем 1300-1400 м. Вернадский В.И. считал, что Н₂S и сернистые соединения выше кислородной поверхности образуются в земной коре при выделении энергии, связанной с изменением органического вещества. Миксопровождающие робиальные процессы, взаимодействие сульфатов и органического вещества, принято относить к основным источникам образования H₂S в природе.

В окраинных частях бассейна, в связи с поступлением инфильтрационных вод в зону аэрации, сероводород микробиального происхождения окисляется кислородом воздуха до появления свободной серы. Наличие серных налетов в некоторых вулканах (Перекишкюль, Шихзагирли, Дашмардан и т.д.) может свиде-

тельствовать об образовании H_2S в составе газов этих вулканов микробиальным путем.

Другим важным фактором образования H_2S является происходящее в процессе катагенетического изменения пород преобразование рассеянных в них сероорганических соединений, устойчивых только при невысоких температурах и давлениях. По мере погружения осадочных толщ, вмещающих сероорганические соединения, они подвергаются воздействию более высоких температур и давлений, в результате чего происходит последовательное выделение сероводорода.

Сероводород на глубинах порядка 2-3 км в зависимости от конкретных термодинамических условий в 50-100 раз более растворим в воде, чем метан и его гомологи; сорбция сероводорода нефтью и рассеянным органическим веществом происходит значительно интенсивнее, чем метана; в отличие от метана и его гомологов сероводород вступает в химическое взаимодействие с различными веществами литологической среды, и поэтому даже относительно небольшие концентрации H₂S в природном газе могут указывать на его более интенсивную по сравнению с метаном генерацию. Например, чтобы на глубине 4000 м сформировалась залежь природного газа (состоящая из равных частей CH₄ и H₂S) путем выделения растворенного газа из газонасыщенных пластовых вод, в последних должно быть растворено сероводорода почти в 100 раз больше, чем метана. Если на этой глубине предельно насыщенные пластовые воды, содержащие одинаковое количество сероводорода и метана, формируют скопление свободного газа, то в них содержание H₂S составит 1% (Амурский и др., 1977).

В этих условиях литологическая среда является одним из важных условий при накоплении сероводорода. Закономерности распространения и образования сероводорода в природных газах мира (Амурский и др., 1977; Анисимов, 1970; Якуцени и др., 1984) изучены сравнительно хорошо, поэтому можно отметить, что сернистые газы с повышенным и высоким содержанием сероводорода появляются главным образом в тех регионах, разрез которых сложен преимущественно карбонатными и сульфатными породами.

Как известно, изученные нефтегазоносные районы Азербайджана сложены терригенными отложениями.

В терригенных породах, как указывал А.Л.Козлов (1950), газ обычно не содержит H₂S, так как он осаждается катионами металлов в виде FeS, FeSO₄, MgSO₄, концентрация которых в терригенных породах выше, чем в карбонатных. При фильтрации УВ в терригенных отложениях возможно весьма тесное соприкосновение нефти и газа с гравитационными и связанными водами. В терригенных породах при фильтрации по трещинам объем гомогенной массы нефти и газа может быть значительно больше, чем в пористой среде, а значит, создаются благоприятные условия для очистки нефти и газа от сероводорода. При этом в пределах разломов, секущих грязевые вулканы, создаются депрессионные зоны, обуславливающие интенсивное разгазирование (десорбция) пластовых флюидов. Новое поступление газа с участков АВПД приводит к повышенной концентрации сероводорода. Это подтверждается повышенным содержанием сероводорода в составе газов грязевого вулкана Хамамдаг (1,41%) и б.Ливанова (0,9%), отобранных после извержения.

Следовательно, сероводород в природных газах Азербайджана образуется двумя вышеуказанными путями: на малых глубинах микробиальным путем, а в глубокопогруженных отложениях — преобразованием рассеянного органического вещества, происходящим в процессе катагенетического изменения пород.

Таким образом, в целом по мере погружения отложений с северо-запада на юговосток в составе природных газов содержание H_2S увеличивается. Однако оно контролируется различными факторами. Так, увеличение H_2S в составе газов грязевых вулканов в основном связано с поступлением газов из зон с АВПД, в попутных газах — с увеличением коэффициента газоносности, а в водорастворенных газах — с увеличением газонасыщенности.

Прогнозная оценка содержания сероводорода в перспективных глубокопогруженных

горизонтах является одной из важных задач в связи с их освоением, транспортировкой нефти и газа и их переработкой.

Изучение закономерности распределения H_2S в углеводородных газах нефтегазовых залежей и грязевых вулканов, особенно изменение содержания H_2S после извержения, позволяет прогнозировать содержание H_2S в перспективных глубокозалегающих углеводородных залежах.

Полученные фактические данные по H_2S в составе газов грязевых вулканов Бакинского архипелага, в газах после извержения грязевых вулканов Хамамдаг, б.Ливанова, а также в пробах газа, отобранных из ПК свиты месторождения Гум-дениз и VII горизонта месторождения 8 Марта, позволяют прогнозировать, что в зонах АВПД в глубокозалегающих нефтегазовых залежах содержание H_2S в углеводородных газах будет соответствовать 1,0-1,5%.

ЛИТЕРАТУРА

- АМУРСКИЙ, Г.И., ГОНЧАРОВ, Э.С., ЖАБРЕЕВ, И.П. 1977. Происхождение сероводородсодержащих природных газов нефтегазоносных бассейнов. *Советская геология*, 5, 56-67.
- АНИСИМОВ, Л.А. 1970. Закономерности распространения сероводорода в осадочной толще. *Советская геология*, 3, 75-83.
- ГУСЕЙНОВ, Р.А., ДАДАШЕВ, Ф.Г. 2000. Углеводородные газы Каспийского моря. Nafta-Press. Баку.
- КАБУЛОВА, А.Я., САФАРОВА, О.Б., БАЙРАМОВА, С.М. 1989. К геохимии газов грязевых вулканов. ДАН Азербайджана, XLV, 11-12.
- КАШКАЙ, М.А. 1952. Минеральные источники Азербайджана. Изд. АН Азербайджанской ССР, Баку, 100
- КОВАЛЕВСКИЙ, С.А. 1940. Грязевые вулканы Южного Прикаспия. Азгостехиздат. Баку. 126.
- КОЗЛОВ, А.Л. 1950. Проблема геохимии природных газов. Гостоптехиздат. Москва.
- МАЛЫШЕК, В.Т., МАЛЯНЦ, А.А., РЕЙНФЕЛЬД, Э.А. 1935. Наличие серобактерий в пластовых водах Сураханского месторождения и геохимические значения этого фактора. *АНХ*, 7-8.
- ЯКУЦЕНИ, В.П. 1984. Интенсивное газонакопление в недрах. Наука. Ленинград. 123.

Рецензент: член-корр. НАН Азербайджана А.А.Фейзуллаев