РАЗРАБОТКА МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА

© М.Т.Абасов и др., 2007

О ВОЗМОЖНОСТИ ВЫДЕЛЕНИЯ И ОЦЕНКИ ЛИТОЛОГИЧЕСКИХ ТИПОВ ПОРОД-КОЛЛЕКТОРОВ ПО ГЕОФИЗИЧЕСКИМ ДАННЫМ

М.Т.Абасов, Р.Ю.Алияров, Е.А.Шахгельдиева, В.Н.Лунина, Л.Ч.Алимурадова, В.Л.Сарафанова

Институт геологии НАН Азербайджана AZ1143, Баку, просп. Г.Джавида, 29А

В статье рассмотрена возможность и предложена методика выделения различных литологических типов коллекторов по комплексу ГИС. Для этого получены соответствующие петрофизические модели, которые включены в стандартный пакет программ интерпретации ГИС. Методика реализована на ряде месторождений ЮКВ.

Выделение в разрезе различных литологических типов пород, слагающих природные резервуары нефти и газа, представляет достаточно важную задачу. Актуальность этой задачи продиктована тем, что различные литологические типы пород-коллекторов обладают различными петрофизическими свойствами и коллекторским потенциалом и это требует разработки методов их идентификации и оценки коллекторских свойств. Решение этих задач имеет особое значение для отложений продуктивной толщи Южно-Каспийской впадины, где основной объем пород-коллекторов представлен песчаными и алевритовыми разностями с различным содержанием глинистого материала.

Анализ данных о литологических типах пород-коллекторов показывает, что практически во всех основных нефтегазоносных районах ЮКВ преимущественный объем коллекторов составляют алевритовые разности, содержание которых в общем объеме коллекторов колеблется от 50.1 до 43.1%, и песчаные разности, составляющие 37.7 - 26% от общего объема.

Вместе с тем фильтрационно-емкостные свойства этих двух литологических разностей достаточно сильно различаются. Так, если на месторождениях Южно-Абшеронской акваториальной зоны средняя пористость песчаных пород составляет 19% и проницаемость – $128*10^{-15}$ м², то для алевритовых коллекторов среднее значение пористости составляет 15.4% и проницаемость – $66.1*10^{-15}$ м², то есть разница в ФЕС этих двух типов пород довольно существенная, особенно по проницаемости.

Еще более существенная разница наблюдается на месторождениях Бакинского архипелага и Нижнекуринской депрессии, где породы-коллекторы по минералогическому составу отличаются от пород Южно-Абшеронской акваториальной зоны и по проницаемости эти два типа коллекторов различаются в 9-11 раз.

Нами был проанализирован структурный коэффициент m, входящий в известную формулу Арчи для оценки пористости пород по данным электрического каротажа (Дахнов, 1985).

Структурный коэффициент m характеризует сложность строения порового пространства горной породы и изменяется в довольно широких пределах от 1.3 для чистых несцементированных, высокопористых песков до 2.3 для плотных пород.

Структурный коэффициент определяют по результатам керновых исследований на коллекции образцов исследуемого региона.

Результаты определения коэффициента т раздельно для песков и алевритов представлены в таблице 1.

Район	Тип пород	С _{гл} средн.,%	С _к средн, %	m
Абшеронский архипелаг	Пески	14.5	13.4	1.6
	Алевриты	20.7	11.4	1.54
Южно-Абшеронская аквато-	Пески	11.1	8.5	1.63
риальная зона	Алевриты	18.3	11.2	1.55
Бакинский архипелаг	Пески	12.2	10.8	1.65
	Алевриты	21.5	14.9	1.61
Нижнекуринская депрессия	Пески	18.4	10.8	1.64
	Алевриты	24.9	16.1	1.58

Данные о структурном коэффициенте для песчаных и алевритовых пород

Как видно из таблицы 1, песчаные и алевритовые породы характеризуются различными значениями коэффициентов m, причем для песчаных пород-коллекторов значения коэффициента m выше, чем для алевритовых. Объясняется это различием содержания глинистого ($C_{r\pi}$) и карбонатного (C_{κ}) материала в этих породах и, главное, относительно более высоким содержанием глинистого цемента в алевритах, чем в песчаных породах, который обладает поверхностной проводимостью и приводит к увеличению электрической проводимости алевритовых пород.

Как было выявлено выше, песчаные и алевритовые породы по параметру пористости и величине структурного коэффициента m различаются, и представляет интерес сравнить эти два типа пород по показателю смачиваемости (n).

Коэффициент n (табл.2.) зависит от степени гидрофильности или гидрофобности поверхности зерен коллектора, его структуры, и, согласно работам (Дахнов, 1985; Итенберг, 1972), величина коэффициента n изменяется в пределах от 1.3 до 2 для гидрофильных коллекторов и 2.5 - 5 – для гидрофобных. Значение коэффициента n оценивают по результатам экспериментальных исследований.

Некоторые различия в показателях смачиваемости n объясняются повышенным содержанием глинистого материала в алевритах по сравнению с песками.

Так как фильтрационно-емкостные свойства песчаных и алевритовых пород-коллекторов различаются по структурному показателю и показателю смачиваемости, возникает необходимость выделения этих разностей в терригенном осадочном комплексе и оценки их коллекторского потенциала по комплексу скважинных геофизических данных.

В настоящее время в практике скважинной геофизики разработаны методы литологической интерпретации данных ГИС, основанные на комбинировании геофизических методов, дающих информацию о литологическом составе горных пород (Шилов, Джафаров, 2007; Dewan, 1983; Hearst et al., 2005; Gardner, Dumanoir, 1980).

Большинство методов интерпретации данных скважинной геофизики позволяет в разрезе выделять породы, имеющие относительно однородный компонентный состав (например, глины, песчаники, доломиты, известняки, туфы). Переходные фации, например алевриты, имеющие тот же минералогический состав, что и песчаники, но различную текстуру, весьма сложно идентифицировать в разрезе.

Для решения этого вопроса нами были проанализированы и обобщены данные керновых исследований петрофизических свойств песчаных и алевритовых пород месторождений Южно-Каспийского осадочного бассейна. Поскольку песчаные и алевритовые породы различаются по текстуре, то есть размеру зерен, слагающих их скелет, то можно предположить, что их различие будет по поверхностно-активным свойствам.

Объектом наших исследований явились месторождения Южно-Абшеронской акваториальной зоны, Бакинского архипелага и Нижнекуринской депрессии.

Таблица 2

Результаты статистической обработки данных параметра насыщения и коэффициента остаточной водонасыщенности для песков и алевритов

Тип породы	Параметр насыщения (Р _н)		Коэффициент остаточной водонасыщенности (к _{во})			Показатель смачиваемости,	
	N	Р _н средн.	$\sigma_{P_{H}}$	N	К _{во} сред.	σ_{KBO}	n
пески	20	15.6	20.4	20	27.5	13.6	1.68
алевриты	16	7.6	4.47	16	35	15.63	1.61

Для этих районов раздельно для песчаных и алевритовых пород были оценены средние значения таких параметров, характеризующих поверхностно-активные свойства скелета породы, как емкость катионного обмена Q₁₀₀ и диффузионно-адсорбционная активность пород А_{да}. Последняя, как известно (Дахнов, 1985; Итенберг, 1972), используется для оценки параметра α_{nc} .

Как видно из таблицы 3, пески и алевриты по своим поверхностно-активным свойствам достаточно сильно различаются. Так, на месторождениях Южно-Абшеронской акваториальной зоны для песчаных пород значение Q₁₀₀ составляет в среднем 3.8 мг-экв/100г, а для алевритовых пород – 8.8 мг-экв/100г, то есть разница – более чем в 2.3 раза. Диффузионно-адсорбционные потенциалы для песчаных пород в среднем составляют 9.7 мв, а для алевритов – 17.6 мв, то есть разница в этом параметре – в 1.8 раза.

Для месторождений Бакинского архипелага наблюдается такая же картина: для песчаных пород значение Q₁₀₀ (6.3 мгэкв/100г) меньше, чем в алевритах (16 мгэкв/100г) почти в 2.5 раза. Разница в параметре, характеризующем диффузионно-адсорбционные потенциалы (А_{да}), двукратная.

Для месторождений Нижнекуринской депрессии также наблюдается различие в поверхностно-активных свойствах песчаных и алевритовых пород, хотя менее существенное, чем для месторождений Южно-Абшеронской акваториальной зоны и Бакинского архипелага.

Для решения задачи выделения в разрезе скважины песчаных и алевритовых пород по данным скважинной геофизики были построены петрофизические зависимости между параметром $\alpha_{\Pi C}$, представляющим собой относительную диффузионно-адсорбционную активность горных пород, и средним диаметром зерен. Параметр $\alpha_{\Pi C}$ определяется по формуле:

$$-\alpha_{\Pi C} = 1 - \frac{A_{\partial a}}{A_{\partial a}^{\max}}$$
,

где $A_{\partial a}$ и $A_{\partial a}^{max}$ – диффузионно-адсорбционная активность образцов песков и алевритов и максимальное значение $A_{\partial a}$ в глинах (Итенберг, 1972).

Таблица 3

	пес	ски	алевриты		
районы	Q ₁₀₀ , мг-экв/100г	А _{да} , мв	Q ₁₀₀ , мг-экв/100г	А _{да} , мв	
Южно-Абшеронская	1.2-10.0	0.6-25.8	2.4-22.2	3.0-45.0	
акваториальная зона	3.8	9.7	8.8	17.6	
Бакинский архипелаг	<u>2.5-6.9</u>	2.6-31.5	<u>1.8-36.7</u>	12.5-48.4	
	6.3	15	16	30.6	
Нижнекуринская депрессия	3.5-13.6	11-49.0	4.4-34.7	6.0-62.5	
	8.2	28.0	15.5	37.6	

Поверхностно-активные свойства песчаных и алевритовых пород исследуемых районов

Этот параметр соответствует относительной амплитуде кривой естественных потенциалов, измеряемой в скважине, и используется в практике для количественной интерпретации данных ПС.

Другим свойством горных пород является естественная радиоактивность пород, которая тесно связана с их литологией.

Для получения петрофизической зависимости были использованы результаты лабораторных измерений естественной радиоактивности на образцах пород месторождений ЮКВ. При этом использовался параметр относительной радиоактивности (Δq_{γ}), определяемый по формуле (Дахнов, 1985; Итенберг, 1972):

$$\Delta q_{\gamma} = \frac{q_{\gamma} - q_{\gamma_{\min}}}{q_{\gamma_{\max}} - q_{\lambda_{\min}}}$$

где q_{γ} - гамма-активность исследуемого образца породы; пг-экв Ra/г; $q_{\gamma_{\min}}$ и $q_{\gamma_{\max}}$ минимальная и максимальная гамма-активность образцов пород, которая для месторождений Южно Абшеронской акваториальной зоны составляет соответственно 0,49 и 5,62 пг-экв Ra/г, а для Бакинского архипелага 1,5 и 5,7 пг-экв Ra/г.

На рисунке 1 показаны зависимости между относительной диффузионно-адсорбционной активностью (кривая 1) и естественной γ -активностью образцов пород (кривая 2) и диаметром зерен для месторождений Южно-Абшеронской акваториальной зоны. Зависимости, представленные на рисунке 1, были использованы для определения пределов изменения диффузионно-адсорбционных потенциалов ($A_{\partial a}$) и естественной γ -активности горных пород для рассматриваемых литологических разностей.

По зависимостям было установлено, что для песков α_{nc} меняется в пределах от 1 до 0.61, а для алевритовых пород – от 0.61 до 0.3. Также установили, что пески имеют естественную γ -активность, варьирующую от 0 до 0.16, а алевриты – от 0.16 до 0.5.

Такие же зависимости были построены и для месторождений Бакинского архипелага (рис.2). Были установлены следующие пределы изменения α_{nc} и Δq_{γ} : для песков – α_{nc} - от 1 до 0.52, и Δq_{γ} - от 0.26 до 0; для алевритов – α_{nc} - от 0.52 до 0.3 и Δq_{γ} - от 0.26 до 0.5.

Рис. 1. График зависимости относительной диффузионно-адсорбционной активности (кривая 1) и естественной γ-активности (кривая 2) образцов пород от среднего диаметра зерен для месторождений Южно-Абшеронской акваториальной зоны.

Рис. 2. График зависимости относительной диффузионно-адсорбционной активности (кривая 1) и естественной γ-активности (кривая 2) образцов пород от среднего диаметра зерен для месторождений Бакинского архипелага.

Полученные результаты нашли свое применение для получения интерпретационной модели при выделении в разрезе с помощью программы QLA песчаных и алевритовых пластов, используя данные скважинной геофизики. В качестве примера были рассмотрены месторождения Бахар, Сангачалы, Дениз-Дуванный, Дениз-Хара-Зиря и Кюровдаг. В результате интерпретации были выделены песчаные и алевритовые пласты, рассчитаны коллекторские параметры (пористость, проницаемость, объемная глинистость и др.), параметры насыщения (рис. 3,4). На этих рисунках кривые коллекторских параметров представлены раздельно для песчаных и алевритовых пластов, то есть кривая РНІТ показывает пористость песков, а кривая РНІТа – пористость алевритовых пластов.

Рис. 3. Пример литологической интерпретации скв. 157 месторождения Бахар. SP - кривая самопроизвольной поляризации (ПС); RT - истинное сопротивление; GR - кривая гамма-каротажа; alfaSP - относительная амплитуда ПС; Jg - кривая относительной радиоактивности; PHIT - пористость песков; PHITa - пористость алевритов; Sw – водонасыщенность

Например, месторождение Бахар, скв. 157 (рис. 3). По стандартной методике в интервале 4022,9-4029,4 м выделяется пласт мощностью 6,5 м с пористостью $K_{\pi} = 0,15$, глинистостью К_{гл} = 0,24 и коэффициентом нефтегазонасыщенности К_{нг} = 0,57. По методике, учитывающей литологическое различие породколлекторов, в этом интервале выделяются три пласта: в интервале 4022 – 4024,2 м выделяется алевритовый пласт с пористостью К_п = 0,14, глинистостью $K_{r\pi} = 0,27$ и коэффициентом нефтегазонасыщенности К_{нг} = 0,22 (т.е. водоносный пласт). В интервале 4023,3 -4027,4 м – песчаный пласт с пористостью К_п = 0,17, глинистостью $K_{r\pi} = 0,19$ и коэффициентом нефтенасыщенности К_{нг} = 0,62. Ниже в интервале 4027,5 - 4032,3 м выделяется алевритовый пласт мощностью 4,8 м с пористостью К_п =0,13, глинистостью К_{гл} = 0,28 и коэффициентом нефтенасыщенности К_{нг} = 0,62. На рис. 4 представлен пример интерпретации по скв. 316 месторождения Кюровдаг, расположенного в Нижнекуринской депрессии. По стандартной методике в интервале 2963 -2975 м выделяется пласт толщиной 12 м с пористостью $K_n = 0,22$, глинистостью $K_{rn} = 0,2$ и коэффициентом нефтегазонасыщенности К_{нг} = 0,55. По предлагаемой методике в кровельной части этого интервала выделяется алевритовый пласт толщиной 2,5 м с пористостью $K_n = 0,14$, глинистостью $K_{rn} = 0,34$ и коэффициентом нефтегазонасыщенности $K_{H\Gamma} = 0,53$. Ниже

выделяется песчаный паст, толщиной 10 м с тонкими прослоями алевритов меньше метра. Пористость этого песчаного пласта $K_{\pi} = 0,29$, глинистость $K_{r\pi} = 0,16$ и коэффициент нефтегазонасыщенности $K_{\mu\Gamma} = 0,63$.То есть полученная модель позволяет более детально и надежно проводить литологическую интерпретацию геологического разреза по комплексу скважинных геофизических данных.

счета линейных запасов углеводородов по традиционной методике и по методике, учитывающей литологическое различие пород. Из таблицы видно, что разница в линейных запасах, подсчитанная по традиционной методике и по предлагаемой, составляет 3,5 -42%, что говорит о необходимости учета литологии пород при подсчете запасов углеводородов природных терригенных резервуаров нефти и газа.

Рис. 4. Пример литологической интерпретации скв. 316 месторождения Кюровдаг. SP - кривая самопроизвольной поляризации (ПС); RL2 - кривая кажущегося сопротивления (КС); RT - истинное сопротивление; GR - кривая гамма-каротажа; alfaSP - относительная амплитуда ПС; Jg - кривая относительной радиоактивности; PHIT - пористость песков; PHITa - пористость алевритов; Sw - водонасыщенность

В таблице 4 приведены результаты под-

Таким образом, исследования позволяют сделать следующие выводы:

- На основе анализа кернового материала обоснован дифференцированный подход в оценке коллекторского потенциала природных резервуаров нефти и газа с учетом литологических типов пород.
- Разработана методика и получены петрофизические модели, позволяющие выделять в разрезе песчаные и алевритовые разности пород-коллекторов, а также раздельно для них оценивать фильтрационно-емкостные свойства и коэффициент нефегазонасыщенности.
- Разработанная интерпретационная модель реализована в стандартном пакете программ компании Шлюмберже для интерпретации данных скважинной геофизики.
- Полученные результаты повышают информативность данных скважинной геофизики и позволяют более надежно

оценивать коллекторские свойства пород, слагающих разрез природных резервуаров нефти и газа Южно-Каспийского осадочного бассейна, а также запасы углеводородов.

ЛИТЕРАТУРА

- ДАХНОВ, В.Н. 1985. Геофизические методы определения коллекторских свойств и нефтегазонасыщения горных пород. Недра. Москва. 309.
- ИТЕНБЕРГ, С.С. 1972. Интерпретация результатов геофизических исследований разрезов скважин. Недра. Москва. 312.
- ШИЛОВ, Г.Я., ДЖАФАРОВ, И.С. 2001. Генетические модели осадочных и вулканогенных пород и технология их фациальной интерпретации по геологогеофизическим данным. Москва. 395.
- DEWAN, J.T. 1983. Essentials of modern open-hole log interpretation. Tulsa. Oklahoma. 362.
- HEARST, J.R., NELSON, PH.H., PAILLET, F.L. 2005. Well logging for physical properties. 483.
- GARDNER, J.S. AND DUMANOIR, J.L. 1980. Lithodensity log interpretation. Shlumberger well services. Houston. Texas. 23.