№ 2, 2019

Cənubi Qafqazin filiz yataqlarinin quyu potensiali üzrə məlumatlarin təkmilləşdirilmiş analizi

Eppelbaum L.V.

Geofizika kafedrası,Yer elmləri bölməsi, Dəqiq Elmlər fakültəsi, Tel Aviv Universiteti 6997801, Ramat Aviv, Tel Aviv, Israel: levap@post.tau.ac.il

Xülasə. Təbii elektrik sahəsi (TES) üsulu – ən ucuz və texniki cəhətdən qeyri-mürəkkəb geofiziki üsullardan biridir. Lakin onun tətbiqini etibarlı interpretasiya metodologiyasının, ilk növbədə mürəkkəb geoloji-geofiziki şərait üçün, olmaması məhdudlaşdırır. TES üsulunda yaranan tipik əngəllər və onların aradan qaldırılma yolları müzakirə edilmişdir. Mövcud interpretasiya üsullarının qısa xülasəsi onların, xüsusilə mürəkkəb fiziki-geoloji şərait üçün, kafi olmayan effektivliyini göstərir. Çətin şəraitdə (maili maqnitləşmə, ərazinin qeyri-düzgün relyefi və normal sahənin qeyri-məlum səviyyəsi) geofiziki kəşfiyyatın maqnit üsulu üçün xüsusi miqdari qayda işlənilmişdir. Aparılan təhlil maqnit sahəsi və TES-in mühüm ümumi xüsusiyyətlərini aşkar etməyə imkan vermişdir. Bu ümumi aspektlər maqnit kəşfiyyatında işlənib hazırlanmış qabaqcıl interpretasiya üsullarını TES-ə tətbiq etməyə imkan verir. Ano-mal mənbənin dərinliyinin etibarlı təyinindən əlavə, bu üsullar polyarizasiya effektinə və müşahidə xətlərinin qeyri-horizontallığına düzəlişlər verməyə inkan verir. TES-in anomaliyalarının təsnifatı üçün yeni parametrin – təbii elektrik momenti – hesablanması təklif edilmişdir. Bu qaydalar (xüsusi nöqtələr və toxunanlar üsullarının yaxşılaşdırılmış modifikasiyaları) həm TES modellərində, həm də Türkiyə və Rusiyanın filiz yataqlarında real situasiyalarda müvəffəqiyyətlə sınaqdan keçirilmişdir. Nəhayyət, işlənib hazırlanmış in-terpretasiya qaydaları Cənubi Qafqazın bir neçə filiz obyektlərində (Azərbaycanda Filizçay və Kaşdağ və Gürcüstanda Uçambo) effektiv tətbiq olunmuşdur. Çoxmodelli yanaşmanın effektivliyi (qravitasiya, maqnit və təbii elektrik sahələrindən istifadə etməklə) Filizçay tipli filiz obyektinin ümumiləşdirilmiş fiziki-geoloji modelində nümayiş etdirilmişdir. Alınan nəticələr işlənib hazırlanmış metodologiyanın böyük praktiki əhəmiyyətini göstərir.

Açar sözlər: TES üsulu, maneələr, miqdari analiz, mürəkkəb fiziki-geoloji şərait, təbii elektrik momenti, filiz obyektləri

 

ƏDƏBİYYAT

Abdelrahman E.M., El-Araby T.M., Ammar A.A., Hassanein H.I. A least-squares approach to shape determination from selfpotential anomalies. Pure and Applied Geophysics, V. 150, 1997, pp. 121-128. DOI: 10.1007/s000240050067

Abdelrahman E.M., Sharafeldin S.M. A least squares approach to depth determination from residual self-potential anoma-lies caused by horizontal cylinders and spheres. Geophys-ics, V. 62, 1997, pp. 44-48.

Alizadeh A.M., Guliyev I.S., Kadirov F.A., Eppelbaum L.V. Geosciences in Azerbaijan. Volume II: Economic Minerals and Applied Geophysics. Springer. Heidelberg – N.Y., 2017, 340 p.

Babu R.H.V., Rao A.D. Inversion of self-potential anomalies in mineral exploration. Computers & Geosciences, V. 14, No. 3, 1988, pp. 377-387.

Birch F. Imaging the water table by filtering self-potential pro-files. Ground Water, V. 36, No. 5, 1998, pp. 779-782.

Bhattacharya B.B., Shalivakhan J.A., Bera A. Three-dimensional probability tomography of self-potential anomalies of graphite and sulphide mineralization in Orissa and Rajasthan, India. First Break, V. 5, 2007, pp. 223-230.

Bukhnikashvili A.V., Kebuladze V.V., Tabagua G.G., Dzhashi G.G., Gugunava G.E., Tatishvili O.V., Gogua R.A. Geophysical Exploration of Adjar Group of Cop-per-Polymetallic Deposits. Metsniereba. Tbilisi, 1974, 199 p. (in Russian).

Castermant J., Mendonca C., Revil A., Trolard F., Bourrie G., Linde N. Redox potential distribution inferred from self-potential measurements associated with the corrosion of a burden metallic body. Geophysical Prospecting, V. 56, No. 2, 2008, pp. 269-282.

Corry C.E. Spontaneous polarization associated with porphyry sulfide mineralization. Geophysics, V. 50, No. 6, 1985, pp. 1020-1034.

Cowan D.R., Allchurch P.D., Omnes G. An integrated geo-electrical survey on the Nangaroo copper-zinc prospect, near Leonora, Western Australia. Geoexploration, V. 13, 1975, pp. 77-98.

Dmitriev A.N. Direct and inverse SP modeling on the basis of exact model of self-potential field nature. Geology and Geophysics, V. 53, No. 6, 2012, pp. 797-812.

Drahor M.G. Application of the self-potential method to archae-ological prospection: some case histories. Archaeological Prospection, V. 11, 2004, pp. 77-105.

El-Araby H.M. A new method for complete quantitative interpretation of self-potential anomalies. Journal of Applied Geophysics, V. 55, 2004, pp. 211-224.

Eppelbaum L.V. Multimodel approach to the study of geophysi-cal targets. Deposited by VINITI, USSR Academy of Sciences, No. 7842-87, 1987, pp. 1-10 (in Russian)

Eppelbaum L.V. Revealing of subterranean karst using modern analysis of potential and quasi-potential fields. Proceedings of the 2007 SAGEEP Conference, V. 20, Denver, USA, 2007, pp. 797-810.

Eppelbaum L.V. Quantitative interpretation of magnetic anoma-lies from bodies approximated by thick bed models in complex environments. Environmental Earth Sciences, V. 74, 2015, pp. 5971-5988.

Eppelbaum L.V. Geophysical potential fields: geological and environmental applications. Elsevier. Amsterdam – N.Y., 2019, 465 p.

Eppelbaum L., Ben-Avraham Z., Itkis S. Ancient Roman remains in Israel provide a challenge for physical-archaeological modeling techniques. First Break, V. 21, No. 2, 2003, pp. 51-61.

Eppelbaum L., Ben-Avraham Z., Itkis S., Kouznetsov S. First results of self-potential method application at archaeo-logical sites in Israel. Transactions of the XI EUG Interna-tional Symposium. Strasbourg, France, 2001, pp. 657.

Eppelbaum L.V., Itkis S.E., Khesin B.E. Optimization of magnetic investigations in the archaeological sites in Israel. In: Special Issue of Prospezioni Archeologiche “Filtering, Modeling and Interpretation of Geophysical Fields at Ar-chaeological Objects”, 2000, pp. 65-92.

Eppelbaum L.V. and Khesin B.E. Some common aspects of mag-netic, induced polarization and self-potential anomalies inter-pretation: implication for ore target localization. Collection of Selected Papers of the IV Intern. Symp. on Problems of East-ern Mediterranean Geology, 2002, pp. 279-293.

Eppelbaum L.V., Khesin B.E. Advanced 3-D modelling of grav-ity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, V. 22, No. 11, 2004, pp. 53-56.

Eppelbaum L.V., Khesin B.E. Geophysical studies in the Cauca-sus. Springer. Heidelberg – N.Y., 2012, 411 p.

Eppelbaum L.V., Khesin B.E., Itkis S.E. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, V. 8, No. 3, 2001, pp. 163-185.

Eppelbaum L.V., Mishne A.R. Unmanned airborne magnetic and VLF investigations: effective geophysical methodology of the near future. Positioning, V. 2, No. 3, 2011, pp. 112-133.

Ernstson K., Scherer V. Self-potential variations with time and their relation to hydrogeologic and meteorological parameters. Geophysics, V. 51, No. 10, 1986, pp. 1967-1977.

Essa K., Mehanee S., Smith P.D. A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body to measured self-potential anomalies. Exploration Geophysics, V. 39, No. 3, 2008, pp. 155-163.

Fitterman D.V. Calculation of self-potential anomalies near vertical contacts. Geophysics, V. 44, No. 2, 1979, pp. 195-205.

Fox R.W. On the electromagnetic properties of metalliferous veins in the mines of Cornwall. Royal Society, London, Philosophical Transactions, 1830, pp. 399-414.

Gobashy M., Abdelazeem M., Abdrabou M., Khalil M.H. Estimating model parameters from self-potential anomaly of 2D inclined sheet using whale optimization algorithm: Applications to mineral exploration and tracing shear zones. Natural Resources Research, https://DOI.org/10.1007/s11053-019-09526-0, 2019, pp.1-21.

Göktürkler G., Balkaya Ç. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms. Journal of Geophysics and Engineering, V. 10, No. 5, 2012, pp. 498-507.

Jardani A., Revil A., Santos F., Fauchard C., Dupont J. Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophysical Prospecting, V. 55, No. 5, 2007, pp. 749-760.

Khesin B.E., Alexeyev V.V., Eppelbaum L.V. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers (Springer). Ser.: Modern Approaches in Geophysics, Boston – Dordrecht – London, 1996, 368 p.

Kilty K.T. On the origin and interpretation of self-potential anomalies. Geophysical Prospecting, V. 32, No.1, 1984, pp. 51-62.

Lile O.B. Self potential anomaly over a sulphide conductor tested for use as a current source. Journal of Applied Geophysics, V. 36, No. 2-3, 1996, pp. 97-104.

Logn O., Bolviken B. Self potentials at the Joma pyrite deposit, Norway. Geoexploration, V. 12, 1974, pp. 11-28.

Mendonca C.A. Forward and inverse self-potential modeling in mineral exploration. Geophysics, V. 73, No. 1, 2008, pp. F33-F43.

Murty B.V., Haricharan P. A simple approach toward interpretation SP anomaly due to 2-D sheet model of short dipole length. Geophysical Research Bulletin, V. 22, No. 4, 1984, pp. 213-218.

Nayak P.N. Electromechanical potential in surveys for sulphide. Geoexploration, V. 18, 1981, pp. 311-320.

Oliveti I., Cardarelli E. Self-Potential Data inversion for environmental and hydrogeological investigations. Pure and Applied Geophysics, V. 176, No. 8, 2019, pp. 3607-3628.

Parasnis D.S. Principles of Applied Geophysics. 4th ed., revised and supplemented. Chapman & Hall. London, 1986, 402 p.

Petrovsky A. The problem of a hidden polarized sphere. Philosophi-cal Magazine, Ser. 7, V. 5, 1928, pp. 334-353, 914-933.

Rittgers J.B., Revil A., Karaoulis M., Mooney M.A., Slater L.D., Atekwana E.A. Self-potential signals generated by the corrosion of buried metallic objects with application to contaminant plumes. Geophysics, V. 78, No. 5, 2013, pp. EN65-EN82.

Quarto R., Schiavone D. Detection of cavities by the self-potential method. First Break, V. 14, No. 11, 1996, pp. 419-430.

Semenov A.S. Electric Prospecting by Self-Potential Method, 4st ed., revised and supplemented. Nedra. Leningrad, 1980, 446 p. (in Russian).

Shevnin V.A. Identification of self-potential anomalies of a diffusion-absorption origin. Moscow University Geology Bulletin, V. 73, No. 3, 2018, pp. 306-311 (in Russian).

Shevnin V.A., Bobachev A.A., Ivanova S.V., Baranchuk K.I. Joint analysis of self potential and electrical resistivity tomography data for studying Alexandrovsky settlement. Transactions of the 20th Meeting of Environmental and Engineering Geophysics. Athens, Greece, Mo PA2 04, 2014, pp. 1-5.

Tarkhov A.G. (Ed.). Electrical Prospecting. Geophysicist’s Manual. Nedra. Moscow, 1980, 520 p. (in Russian).

Telford W.M., Geldart L.P., Sheriff R.E. Applied Geophysics, 2nd edition. Cambridge University Press. Cambridge, 1990, 770 p.

Yüngül S. Spontaneous-potential survey of a copper deposit at Sariyer, Turkey. Geophysics, V. 19, No. 3, 1954, pp. 455-458.

Zaborovsky A.I. Electric Prospecting. Gostoptekhizdat. Moscow, 1963, 432 p. (in Russian).

Zhdanov M.S., Keller G.V. The Geoelectrical Methods in Geo-physical Exploration. Elsevier. Amsterdam, 1994, 873 p.

 

Məqaləni yüklə

DOI:10.33677/ggianas20190200029

JURNAL ARXİVİ

Crossref Member Badge Crossref logo